Synopsis: Spinning on a gold atom

The rotation of individual large molecules adsorbed onto a gold surface has been observed with a scanning tunneling microscope.
Synopsis figure

In biological systems, molecules convert chemical energy into mechanical motion—the source of movement in living organisms. Such molecular motors could be assembled into nanoscale machines, provided we can control their motion and harness them into large-scale arrays on surfaces.

Li Gao and scientists at the Institute of Physics and the Institute of Chemistry in Beijing, in collaboration with the University of Liverpool, have constructed an array of anchored single-molecule rotors on a gold surface. In a paper appearing in Physical Review Letters, they have found that single (t-Bu)4-ZnPc (tetra-tert-butyl zinc phtalocyanin) molecules on a reconstructed gold surface possess a well-defined axis of rotation, and that these molecules also form large-scale ordered arrays.

The group discovered the dynamic behavior of the adsorbed molecule using scanning tunneling microscopy. Instead of seeing the cross-shaped (t-Bu)4-ZnPc molecule, the authors observed a structure reminiscent of a folding fan, which they identified as the time-averaged image of the molecule rotating at high frequency. With evidence that the molecules are rotating, a combination of imaging experiments and density functional calculations establishes the center of rotation as an adsorbed gold atom at an elbow site in the reconstructed surface. A nitrogen atom in the molecule forms a bond with the gold atom, which serves as the pivot for the molecule’s rotation. – Daniel Ucko


More Announcements »

Subject Areas


Previous Synopsis


Waving, one by one

Read More »

Next Synopsis

Related Articles

Viewpoint: Sharing Quantum States
Condensed Matter Physics

Viewpoint: Sharing Quantum States

A quantum dot can form a mesoscopic quantum state together with the electrons of a cavity in which the dot is embedded. Read More »

Focus: Shaking Cleans Nanoscale Surface

Focus: Shaking Cleans Nanoscale Surface

An oscillatory motion dramatically reduces the number of contaminant molecules at the interface between two surfaces. Read More »

Viewpoint: Intramolecular Imaging at Room Temperature
Atomic and Molecular Physics

Viewpoint: Intramolecular Imaging at Room Temperature

An improved take on an existing approach provides intramolecular imaging of molecules adsorbed on a solid surface at room temperature. Read More »

More Articles