Synopsis: Spinning on a gold atom

The rotation of individual large molecules adsorbed onto a gold surface has been observed with a scanning tunneling microscope.
Synopsis figure

In biological systems, molecules convert chemical energy into mechanical motion—the source of movement in living organisms. Such molecular motors could be assembled into nanoscale machines, provided we can control their motion and harness them into large-scale arrays on surfaces.

Li Gao and scientists at the Institute of Physics and the Institute of Chemistry in Beijing, in collaboration with the University of Liverpool, have constructed an array of anchored single-molecule rotors on a gold surface. In a paper appearing in Physical Review Letters, they have found that single (t-Bu)4-ZnPc (tetra-tert-butyl zinc phtalocyanin) molecules on a reconstructed gold surface possess a well-defined axis of rotation, and that these molecules also form large-scale ordered arrays.

The group discovered the dynamic behavior of the adsorbed molecule using scanning tunneling microscopy. Instead of seeing the cross-shaped (t-Bu)4-ZnPc molecule, the authors observed a structure reminiscent of a folding fan, which they identified as the time-averaged image of the molecule rotating at high frequency. With evidence that the molecules are rotating, a combination of imaging experiments and density functional calculations establishes the center of rotation as an adsorbed gold atom at an elbow site in the reconstructed surface. A nitrogen atom in the molecule forms a bond with the gold atom, which serves as the pivot for the molecule’s rotation. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Nanophysics

Previous Synopsis

Optics

Waving, one by one

Read More »

Next Synopsis

Related Articles

Viewpoint: An Ultrafast Switch for Electron Emission
Condensed Matter Physics

Viewpoint: An Ultrafast Switch for Electron Emission

By firing laser pulses of two different colors at a nanosized metal tip, researchers create an interference effect that turns electron emission on and off with femtosecond timing. Read More »

Synopsis: Decoding the Light from Ten Million Quantum Dots
Photonics

Synopsis: Decoding the Light from Ten Million Quantum Dots

A spectroscopy method can identify quantum dots within an ensemble based on their size and emission frequency. Read More »

Synopsis: Coulomb Drag in a Double Dot
Nanophysics

Synopsis: Coulomb Drag in a Double Dot

Electric current passing through a quantum dot can generate current in a nearby dot through a coordinated tunneling mechanism. Read More »

More Articles