Synopsis

Equality for quantum graphs

Physics 2, s1
Quantum graphs are convenient mathematical tools for describing complex molecules and networks of quantum wires. Scientists are addressing the question: When and how fast can a wave function spread out over the entire graph?
Illustration: Courtesy of Fabien Piotet

A quantum graph consists of a set of vertices and edges that can model a variety of systems such as electronic bonds in a complex molecule, a network of quantum wires, and photonic crystals. A wave function distributed over such a graph can be localized, in which case it is concentrated within a certain region; or, at the opposite extreme, it can spread itself equally over all possible regions.

Writing in Physical Review Letters, Sven Gnutzmann of the University of Nottingham and Jon Keating and Fabien Piotet of the University of Bristol use methods from field theory to provide a measure of how close a large quantum graph is to having a wave function uniformly spread over all its vertices and how quickly this happens.

In their model, the probability for a particle to move along the edges is determined by a quantum mechanical scattering matrix at each vertex and is analogous to a classical graph in which a memoryless (Markov) process describes the transition probabilities. So, what is the criterion for determining whether the wave function is distributed equally over the entire quantum graph? The answer depends on how the eigenvalue spectrum for the corresponding classical graph changes as the graph size is increased. Such semiclassical approximations and analogies provide a bridge between the quantum and classical worlds. – Sonja Grondalski


Subject Areas

Quantum Physics

Related Articles

Quantum “Torch” Begins Its Relay
Quantum Physics

Quantum “Torch” Begins Its Relay

A quantum light source is touring European labs in preparation for the 2025 International Year of Quantum Science and Technology. Read More »

Quantum Machine Learning Goes Photonic
Quantum Physics

Quantum Machine Learning Goes Photonic

Measuring a photon’s angular momentum after it passes through optical devices teaches an algorithm to reconstruct the properties of the photon’s initial quantum state. Read More »

Shielding Quantum Light in Space and Time
Quantum Physics

Shielding Quantum Light in Space and Time

A way to create single photons whose spatiotemporal shapes do not expand during propagation could limit information loss in future photonic quantum technologies. Read More »

More Articles