Synopsis: The narrowing search for the Higgs boson

The results from a search at Fermilab for the Higgs boson edge closer to the predictions of the Standard Model.
Synopsis figure
Illustration: Alan Stonebraker

In the Standard Model of particle physics, mass arises from spontaneous symmetry breaking. A byproduct of this mechanism—and as such, a long-sought keystone of the Standard Model—is a particle called the Higgs boson.

Except for its mass, the properties of the Higgs boson are predicted by the Standard Model. Experimental searches over the years have gradually pushed the lower bound up on the mass of the Higgs boson to 115GeV. The CDF and D0 collaborations at Fermilab have been searching in the region above this threshold, but they do not yet have a sufficient number of collisions to see the Higgs boson—unless the cross section for producing this particle in a collision is larger than the Standard Model predicts.

In a paper appearing in Physical Review Letters the CDF collaboration reports a search for the Higgs boson, via its expected decay to two W bosons. Based on a large amount of data (3 inverse femtobarns), they see no sign of the Higgs boson, and constrain its production cross section to less than ten times the prediction of the Standard Model. In fact, for the resonance energy of twice the W mass, or 160GeV, they put an upper bound on the cross section for the decay to be less than twice the Standard Model prediction. It will be interesting to see what constraints or evidence Fermilab can present before the Large Hadron Collider conducts its own Higgs boson searches in the next few years. – Robert Garisto


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Atomic and Molecular Physics

Shaking atoms to make them stop

Read More »

Next Synopsis

Atomic and Molecular Physics

How to build a nanoscale atom trap

Read More »

Related Articles

Viewpoint: Connecting the Bright and Dark Sides of Galaxies
Cosmology

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

A universal law shows that the rotation of a disk galaxy is determined entirely by the visible matter it contains, even if the disk is mostly filled with dark matter. Read More »

Viewpoint: Cosmic-Ray Showers Reveal Muon Mystery
Particles and Fields

Viewpoint: Cosmic-Ray Showers Reveal Muon Mystery

The Pierre Auger Observatory has detected more muons from cosmic-ray showers than predicted by the most up-to-date particle-physics models. Read More »

Synopsis: Making Monopoles with Waves
Particles and Fields

Synopsis: Making Monopoles with Waves

Magnetic monopoles—theorized particles with only one magnetic pole—might possibly be created by wave-wave collisions. Read More »

More Articles