Synopsis: Relaxing in a nanotube

Measurements of how out-of-equilibrium electrons lose energy along a carbon nanotube reveal that they do not significantly scatter over several microns.
Synopsis figure
Illustration: Courtesy of N. Mason

How electrons scatter in a material strongly influences its transport characteristics and, by extension, its device applicability. Writing in Physical Review Letters, Yung-Fu Chen and coworkers from the University of Illinois and Michigan State University report measurements of the energy distribution of electrons in a carbon nanotube under nonequilibrium conditions. To accomplish this, the group studies the tunneling current in a nanotube connected to a metallic superconducting probe.

The authors find that electrons relax slowly as they move along the nanotube, i.e., a typical electron does not lose its energy over several microns. In addition, while the relaxation rate does depend on temperature, it appears to be independent of the end-to-end conductance values measured along the nanotube. These insights are valuable in the study of transport in one-dimensional systems such as Luttinger liquids, since carbon nanotubes, as opposed to previously studied metallic wires, are thought to be purely one dimensional. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

MesoscopicsNanophysics

Previous Synopsis

Atomic and Molecular Physics

How to build a nanoscale atom trap

Read More »

Next Synopsis

Particles and Fields

Deciphering a bump in the spectrum

Read More »

Related Articles

Focus: Nanochannel Could Separate Mixed Fluids
Fluid Dynamics

Focus: Nanochannel Could Separate Mixed Fluids

Calculations show that capillary forces affecting a fluid mixture flowing through a nanochannel could be used to separate the mixture. Read More »

Focus: Negative Resistance with a Single Atom
Nanophysics

Focus: Negative Resistance with a Single Atom

Current flowing through a single silicon atom can be made to decrease with increasing voltage, potentially allowing the integration of a new type of component into microelectronic circuits. Read More »

Viewpoint: An Ultrafast Switch for Electron Emission
Condensed Matter Physics

Viewpoint: An Ultrafast Switch for Electron Emission

By firing laser pulses of two different colors at a nanosized metal tip, researchers create an interference effect that turns electron emission on and off with femtosecond timing. Read More »

More Articles