Synopsis: Diamonds are a scientist’s best friend

Diamond is famous for its exceptional hardness and structural stability. Researchers are exploring different ways to push these mechanical properties beyond their current limits.
Synopsis figure

Two papers appearing in Physical Review Letters take different routes toward investigating the legendary hardness of diamond. Diamond is used to investigate the high-pressure behavior of solids, through diamond-anvil cells. However, these cells can typically only withstand pressures of up to 300 GPa due to the mechanical strength limit of diamond. While this may seem high enough, it is believed that the pressures exceed 1 TPa at the core of planets like Jupiter and Saturn. The nature of solids at such pressures remains a mystery.

To study solids at higher pressures, a group of researchers at the Lawrence Livermore National Laboratory present a novel ramp-wave compression technique that allows them to study diamond at 800 GPa. The diamond sample is ablated with x-ray lasers that are ramped up monotonically until a uniform compression wave is produced. This wave propagates faster than the thermal wave caused by the laser ablation, resulting in compression without heating.

In another study on diamond, researchers from Université Paris Nord, Université Blaise Pascal, and Université Pierre et Marie Curie have investigated the solubility of boron in diamond at the European Synchrotron Radiation Facility in Grenoble, France. They have synthesized cubic boron carbide (c-BC5), a diamondlike phase with the highest boron content ever achieved. Compared to diamond, the Vickers hardness of c-BC5 is slightly less, but it has a comparable hardness at the nanoscale and nearly twice the fracture toughness. This makes c-BC5 an exceptional super-abrasive and a promising material for high-temperature electronics applications. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Strongly Correlated Materials

Insulating behavior is only skin deep

Read More »

Next Synopsis

Nuclear Physics

Finding the missing sign

Read More »

Related Articles

Synopsis: Electron–Phonon Affair Comes to Light
Condensed Matter Physics

Synopsis: Electron–Phonon Affair Comes to Light

Photoelectron spectroscopy reveals the details of the interaction between electronic and vibrational excitations in a molecular material. Read More »

Synopsis: Topological Origami
Materials Science

Synopsis: Topological Origami

Origami formed by folding and cutting a material can feature well-defined, tunable mechanical properties. Read More »

Synopsis: Whisky-Inspired Coatings
Fluid Dynamics

Synopsis: Whisky-Inspired Coatings

As a whisky drop dries, a combination of molecules in the liquid ensure a spatially uniform deposition—a finding that could inspire coating technologies. Read More »

More Articles