Synopsis: A topological metal in one dimension

The finding of one-dimensional, topologically protected conducting states on the surface of bismuth suggests the possibility of a quantum spin Hall effect in one dimension.
Synopsis figure

Conducting one-dimensional channels were known to exist at the edges of quantum Hall systems. Recently, similar metallic states were also discovered along the edges and surfaces of certain band insulators with large spin-orbit coupling, such as HgTe quantum wells and Bi-Sb alloy, respectively. These unusual metallic states constitute a pair with opposite spin and electron momentum and are “topologically protected” because deformations or addition of impurities to the surface can modify the conduction and valence-band states but cannot open a gap between them.

In Physical Review Letters, Justin Wells and colleagues from the University of Aarhus in Denmark, along with a multinational list of collaborators from Switzerland, Russia, Germany, and Spain report the finding of a one-dimensional topological spin-split surface metallic state on the (114) surface of bismuth using scanning tunneling microscopy and photoemission spectroscopy. A reconstruction on this surface of bismuth produces straight atomic rows in the x direction with a wide separation in the y direction, giving rise to the one-dimensional character. Since bismuth is a semimetal and not an insulator, this surface state lies partly inside the bulk continuum of states. In contrast to the case of higher dimensions, spins in the one-dimensional topological metallic state are aligned with the momentum of the electrons rather than being perpendicular to it. The authors also predict that the same surface state is likely to be present in insulating Bi0.9Sb0.1 to give rise to a one-dimensional quantum spin Hall phase. – Sarma Kancharla


Announcements

More Announcements »

Subject Areas

Semiconductor PhysicsMesoscopics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Stretching out entanglement

Read More »

Related Articles

Synopsis: Good Vibrations
Quantum Information

Synopsis: Good Vibrations

With the assistance of lattice vibrations, quantum dots perform as single-photon emitters. Read More »

Focus: New Molecular Probe Uses Gold Antennas
Atomic and Molecular Physics

Focus: New Molecular Probe Uses Gold Antennas

Micrometer-scale antennas made from gold may give chemists a peek into the dynamics of molecular bonds. Read More »

Focus: <i>Landmarks</i>—Accidental Discovery Leads to Calibration Standard
Semiconductor Physics

Focus: Landmarks—Accidental Discovery Leads to Calibration Standard

The quantum Hall effect, discovered unexpectedly 35 years ago, is now the basis for defining the unit of electrical resistance. Read More »

More Articles