Synopsis: An approach to a theory of quantum gravity

Finding a quantum theory of gravity remains one of the great unsolved problems in modern physics. Two papers present a quantum gravity theory that, while making different assumptions than general relativity, still reproduces Einstein’s theory in certain limits.
Synopsis figure

At large distances, Einstein’s theory of general relativity describes gravitational physics remarkably well.  However, attempts at defining quantum gravity at arbitrarily short distances based on the Einstein-Hilbert action of general relativity fail.

In two papers appearing in Physical Review Letters and Physical Review D, Petr Hořava of the University of California, Berkeley, in the US suggests a novel solution to finding a quantum theory of gravity that is renormalizable.  The novelty of Hořava’s approach lies in temporarily abandoning the symmetries that are the cornerstone of general relativity: invariance under general space-time coordinate transformations. Hořava proposes a carefully constructed theory that treats time and space differently but has the virtue of short distance behavior compatible with renormalizability.

But how is this theory related to Einstein’s general relativity—our well-tested theory of gravity?  According to Hořava, general relativity arises in the infrared (long distance) limit of his theory where the familiar properties and symmetries of general relativity emerge. – Ansar Fayyazuddin


Announcements

More Announcements »

Subject Areas

Gravitation

Previous Synopsis

Related Articles

Focus: Energy Boost from Black Holes
Astrophysics

Focus: Energy Boost from Black Holes

Particles orbiting near a spinning black hole might collide and get ejected with much more energy than previous calculations showed. Read More »

Viewpoint: The Simplicity of Black Holes
Astrophysics

Viewpoint: The Simplicity of Black Holes

The no-hair theorem was originally formulated to describe isolated black holes, but an extended version now describes the more realistic case of a black hole distorted by nearby matter. Read More »

Synopsis: Neutrino Test of Lorentz Invariance
Gravitation

Synopsis: Neutrino Test of Lorentz Invariance

Oscillations in atmospheric neutrinos show no sign of violating a fundamental principle of relativity. Read More »

More Articles