Synopsis: Optical echoes cut through the noise

The demonstration of all-optical spin-echo measurements may provide a route toward decoupling spins from noise sources.
Synopsis figure
Illustration: S. Clark et al., Phys. Rev. Lett. (2009)

Transverse dephasing limits quantum computing and magnetic resonance applications, so the ability to measure T2 is essential. A standard method for determining T2 is the spin-echo technique, in which two or more resonant pulses are applied to the spin system with a short delay between them. However, the resonant frequencies of most spin systems are in the microwave range. Noise sources that cause dephasing on faster time scales may therefore obscure the measurement of T2.

In Physical Review Letters, Susan Clark at Stanford University, and collaborators at Hewlett-Packard Laboratories in the US, the National Institute of Informatics in Japan, and the University of Glasgow, UK, demonstrate a generalization of the standard spin-echo technique that uses an excited state and off-resonant pulses, allowing them to perform spin rotations with optical frequencies. By demonstrating this method in Si donors in GaAs, they show that less noisy measures of T2 in materials with fast dephasing times can be made than those obtained by using microwave spin-echo techniques. In principle, the same methods could be used to extend the decoherence time in semiconductor systems by decoupling the spins from the noise sources that cause dephasing, which is very promising for ultrafast optical dynamic decoupling of spin-based qubits. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Quantum InformationMagnetism

Previous Synopsis

Next Synopsis

Interdisciplinary Physics

A force by any other name…

Read More »

Related Articles

Synopsis: One-Way Quantumness
Quantum Physics

Synopsis: One-Way Quantumness

Experiments provide evidence for one-way quantum steering—an effect by which distant entangled systems can influence one another in a directional way. Read More »

Viewpoint: Quantum Hoverboards on Superconducting Circuits
Quantum Physics

Viewpoint: Quantum Hoverboards on Superconducting Circuits

A new quantum device uses a superconducting circuit to monitor a 2D gas of electrons floating on the surface of superfluid helium. Read More »

Synopsis: Even-Handed Control of Quantum Dot Qubits
Quantum Information

Synopsis: Even-Handed Control of Quantum Dot Qubits

A new way to control the coupling of spins between adjacent quantum dots produces qubits that are less susceptible to electronic noise. Read More »

More Articles