Synopsis: More illusory than invisible

Bent light can do more than render objects invisible—it can make them appear as something else.
Synopsis figure
Illustration: adapted from Y. Lai et al., Phys. Rev. Lett. (2009)

Optical cloaking, a phenomenon that once only had connotations of Hollywood and science fiction, recently moved from fantasy to reality. In 2006, researchers effectively rendered an object invisible by sheathing it in an “invisibility cloak” made of a metamaterial [1], which is a class of artificial composite materials with electromagnetic properties that are more varied than those of their constituents.

Recently, Yun Lai and coauthors at the Hong Kong University of Science and Technology proposed the concept of “cloaking at a distance” with a specially designed metamaterial [2]. Now, in a paper appearing in Physical Review Letters, they go a step further. Using the techniques of transformation optics, which allows Maxwell’s equations and topology to bend the space through which light passes, they describe how a particular object could be optically transformed into another: a spoon may appear to be a cup, or one may see a peephole where there is really a solid wall. Rendering an object invisible then becomes one case out of many possible illusions. We await the experimental realization. – Sami Mitra

[1] D. Schurig et al., Science 314, 977 (2006).

[2] Y. Lai et al., Phys. Rev. Lett. 102, 093901 (2009); T. Philbin, Physics 2, 17 (2009).


Announcements

More Announcements »

Subject Areas

OpticsMetamaterials

Previous Synopsis

Biological Physics

Protein diffusion

Read More »

Next Synopsis

Related Articles

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

Synopsis: Polarons Drive a Magneto-Optical Effect
Magnetism

Synopsis: Polarons Drive a Magneto-Optical Effect

A surprisingly large magneto-optical response occurs when mobile electrons in a cooled material become trapped by their interaction with the surrounding lattice. Read More »

Synopsis: A Single-Photon Cheshire Cat
Quantum Physics

Synopsis: A Single-Photon Cheshire Cat

Researchers detected the polarization of a photon separate from the photon itself, just as the grin of Lewis Carroll’s Cheshire cat can appear apart from the cat’s body. Read More »

More Articles