Synopsis: More illusory than invisible

Bent light can do more than render objects invisible—it can make them appear as something else.
Synopsis figure
Illustration: adapted from Y. Lai et al., Phys. Rev. Lett. (2009)

Optical cloaking, a phenomenon that once only had connotations of Hollywood and science fiction, recently moved from fantasy to reality. In 2006, researchers effectively rendered an object invisible by sheathing it in an “invisibility cloak” made of a metamaterial [1], which is a class of artificial composite materials with electromagnetic properties that are more varied than those of their constituents.

Recently, Yun Lai and coauthors at the Hong Kong University of Science and Technology proposed the concept of “cloaking at a distance” with a specially designed metamaterial [2]. Now, in a paper appearing in Physical Review Letters, they go a step further. Using the techniques of transformation optics, which allows Maxwell’s equations and topology to bend the space through which light passes, they describe how a particular object could be optically transformed into another: a spoon may appear to be a cup, or one may see a peephole where there is really a solid wall. Rendering an object invisible then becomes one case out of many possible illusions. We await the experimental realization. – Sami Mitra

[1] D. Schurig et al., Science 314, 977 (2006).

[2] Y. Lai et al., Phys. Rev. Lett. 102, 093901 (2009); T. Philbin, Physics 2, 17 (2009).


Announcements

More Announcements »

Subject Areas

OpticsMetamaterials

Previous Synopsis

Biological Physics

Protein diffusion

Read More »

Next Synopsis

Related Articles

Viewpoint: Ionization Delays That Stand Out
Optics

Viewpoint: Ionization Delays That Stand Out

Attosecond-resolution experiments have determined the delay in an electron’s emission from a molecule after being ionized with light. Read More »

Viewpoint: Liquid Light with a Whirl
Magnetism

Viewpoint: Liquid Light with a Whirl

An elliptical light beam in a nonlinear optical medium pumped by “twisted light” can rotate like an electron around a magnetic field. Read More »

Focus: A Thermostat that Consumes No Energy
Energy Research

Focus: A Thermostat that Consumes No Energy

Experiments show that a region next to changing hot and cold areas can be maintained at a fixed temperature without consuming energy. Read More »

More Articles