Synopsis: Getting the calcium you need

A Bose-Einstein condensate of calcium atoms has been created, the first from alkaline earth elements and potentially useful for stable clocks and precision measurements.
Synopsis figure

Following the first Bose-Einstein condensation (BEC) of ultracold rubidium atoms in 1995, researchers have set about conquering the rest of the periodic table. Different atomic species have different useful traits, such as narrow linewidths or resistance to perturbation by external electric and magnetic fields, characteristics advantageous for applications such as precision measurements or atomic clocks. Now, as Sebastian Kraft, Felix Vogt, Oliver Appel, Fritz Riehle, and Uwe Sterr at the Physikalisch-Technische Bundesanstalt, Braunschweig, Germany, report in Physical Review Letters, a member of another large and important class of atoms—the alkaline earths—has been cooled to form a BEC.

Alkaline earths are elements in Group II of the periodic table and are marked by weak, highly forbidden energy level transitions, which means the linewidths are quite narrow and useful for precision measurements. Kraft et al. used a series of magneto-optical traps to cool calcium-40 down to a temperature of 15μK, after which the calcium atoms were evaporatively cooled to 260nK to form a BEC. Their trapping techniques were able to overcome the collisional losses caused by the very large scattering length of calcium that defeated previous attempts to create a BEC. With alkaline earth atoms added to the trophy case, the combination of narrow linewidths and the coherent matter waves possible with BEC should push the envelope of quantum information studies and high-precision metrology. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Atomic and Molecular Physics

Electronics without solids

Read More »

Next Synopsis

Nanophysics

Small-scale hydraulics

Read More »

Related Articles

Synopsis: Taking Pictures with Single Ions
Atomic and Molecular Physics

Synopsis: Taking Pictures with Single Ions

A new ion microscope with nanometer-scale resolution builds up images using single ions emitted one at a time from an ion trap. Read More »

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence
Atomic and Molecular Physics

Viewpoint: Squeezed Light Reengineers Resonance Fluorescence

By bathing a superconducting qubit in squeezed light, researchers have been able to confirm a decades-old prediction for the resulting phase-dependent spectrum of resonance fluorescence. Read More »

Synopsis: Skydiving Spins
Gravitation

Synopsis: Skydiving Spins

Atom interferometry shows that the free-fall acceleration of rubidium atoms of opposite spin orientation is the same to within 1 part in 10 million. Read More »

More Articles