Synopsis: A way to distinguish quantum noise

Whether two quantum states can be distinguished over time provides a test to characterize noise from the environment.
Synopsis figure
Illustration: H-P. Breuer et al., Phys. Rev. Lett. (2009)

Although experiments are carefully designed to explore an ideal quantum state, in reality, they measure open quantum systems, meaning those that are exposed to an external environment. Understanding how coupling to the environment leads to noise is important in order to control and optimize features, such as coherence and entanglement, in a quantum system.

A standard approach to determining the dynamics of a quantum system is to solve a joint system-environment equation and then eliminate the degrees of freedom associated with the environment. With Markovian, or memoryless dynamics, noise will cause the coherence to decay exponentially. In contrast, non-Markovian dynamics exhibits more complex behavior, which can enhance or degrade system features. In Physical Review Letters, Heinz-Peter Breuer of the Universität Freiburg in Germany and Elsi-Mari Laine and Jyrki Piilo at the University of Turku in Finland present a new way to determine if an open quantum system follows non-Markovian dynamics. Their method is based on calculating how the distinguishability of two initial quantum states changes over time due to the environment. If the distinguishability increases at certain times, then information flow is exchanged between the system and the environment, indicating that the system is non-Markovian. If the distinguishability is always decreasing, then the system is Markovian.

This simple criterion does not require knowledge about the details of the environment. Instead, tomographic measurements of a system can quantify the extent to which a system exhibits non-Markovian behavior. – Sonja Grondalski


Announcements

More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Next Synopsis

Magnetism

No strain, no gain

Read More »

Related Articles

Viewpoint: Photon Qubit is Made of Two Colors
Optics

Viewpoint: Photon Qubit is Made of Two Colors

Single particles of light can be prepared in a quantum superposition of two different colors, an achievement that could prove useful for quantum information processing. Read More »

Synopsis: Ten Photons in a Tangle
Quantum Information

Synopsis: Ten Photons in a Tangle

An entangled polarization state of ten photons sets a new record for multiphoton entanglement. Read More »

Synopsis: Quantum States Made with a Pluck
Quantum Information

Synopsis: Quantum States Made with a Pluck

A proposed method of generating phonon states for quantum applications uses a single electron trapped in a suspended carbon nanotube. Read More »

More Articles