Synopsis: May cooler molecules prevail

Improved optical techniques may permit direct cooling of molecules to form ultracold gases, instead of cooling the atoms first.
Synopsis figure
Illustration: E. S. Shuman, Yale University

Researchers have successfully used laser techniques to produce molecules at temperatures below one millikelvin, but only if the constituent atoms are cooled first and then form molecules. Unfortunately, only molecules made of two alkali atoms are amenable to this technique and then, only in limited quantities. Laser cooling of an already-formed molecule would tap into a wider range of species, but cooling tends to be blocked when the molecules are sidetracked into unwanted rotational and vibrational states. Now, Edward Shuman, John Barry, David Glenn, and David DeMille of Yale University in the US report in Physical Review Letters an optical technique that can suppress undesirable rotational and vibrational decays in strontium monofluoride.

Molecular cooling requires optical cycling—repeated nudges created by absorptions of photons and radiative decays in a closed loop. In strontium monofluoride, the vibrational levels in the excited electronic state are overwhelmingly likely to transition to states with the same vibrational quantum number in the ground state, and with only one or two extra “repumping” lasers, it is possible to keep the molecules from straying out of the optical cooling cycle. The Yale group eliminated the occupation of unwanted rotational levels by a similarly careful choice of states, but molecules can also get lost in “dark” states, so they solved this by applying a small magnetic field. The researchers apply their technique to a molecular beam of strontium monofluoride and report a clear fluorescence signal from the optical cycling and a deflection of the beam from the induced radiative force, opening the way for direct laser cooling of this and similar molecular species. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsOptics

Previous Synopsis

Superconductivity

A clean slate

Read More »

Next Synopsis

Related Articles

Viewpoint: Towards an Atomtronic Diode
Atomic and Molecular Physics

Viewpoint: Towards an Atomtronic Diode

Rubidium atoms in an optical trap have been made to exhibit negative differential conductance, a phenomenon normally found in semiconductor diodes. Read More »

Synopsis: Pinpointing Qubits in a 3D Lattice
Quantum Information

Synopsis: Pinpointing Qubits in a 3D Lattice

Researchers manipulate atomic qubits individually in a three-dimensional optical lattice. Read More »

Synopsis: The Helical Factor
Optics

Synopsis: The Helical Factor

An array of helical elements absorbs radiation of a certain frequency while casting no shadow in light over a range of other frequencies. Read More »

More Articles