Synopsis

When the quantum dog doesn’t bark

Physics 2, s125
The mere possibility of a quantum transmission, rather than its actual occurrence, may enable key distribution in quantum cryptography.
Illustration: Alan Stonebraker

In a famous Sherlock Holmes tale, the fact that a dog did not bark allowed the fictional detective to solve a case. The absence of quantum events may also prove useful, as reported in Physical Review Letters by Tae-Gon Noh of the Electronics and Telecommunications Research Institute in Daejon, Korea. In quantum cryptography, remote parties (invariably named Alice and Bob) share a secret key, distributed over a quantum channel, which can be used to encrypt and decode messages between them. In conventional quantum key distribution, all of this is done via transmission of particles carrying secret information, and any attempt by an eavesdropper (the relentlessly malicious Eve) to snag the key will be thwarted thanks to the laws of quantum mechanics.

Noh proposes an alternative protocol based on “counterfactual” quantum communication in which a secret key can be distributed as a result of the mere possibility of particle transmission rather than an actual event. To achieve this, a single photon is sent into a Michelson interferometer, one arm of which is watched by Bob, while the other arm is examined by Alice. Bit values are encoded in photon polarizations, and Alice and Bob can set up a secret key by noting which photons are detected in which arms, including events in which photons do not even travel down the signal path that Bob is watching (the silent quantum dog). The author points out that this method can be implemented with existing optical technology and may foil Eve, who cannot benefit from photons that haven’t been transmitted. – David Voss


Subject Areas

Quantum Information

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Erasure Qubits for Abridged Error Correction
Quantum Information

Erasure Qubits for Abridged Error Correction

Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers. Read More »

More Articles