Synopsis: Gravity organizes sediment

Sedimenting particles subjected to periodic shear are used to demonstrate a link between self-organized criticality and nonequilibrium phase transitions.
Synopsis figure
Illustration: L. Corté et al., Phys. Rev. Lett. (2009)

Self-organized criticality (SOC), proposed by Per Bak, Chao Tang, and Kurt Wiesenfeld, is a property of dynamical systems that leads to scale-invariant behavior without the need to fine tune parameters to precise values as required in an ordinary phase transition. The ideas have been applied to study diverse phenomena ranging from the power-law distribution of earthquake intensities to forest fires and even biological evolution. SOC has inspired countless numerical and theoretical studies, but the few experimental characterizations such as liquid 4He near the superfluid transition, or rice piles, do not elucidate how criticality arises far from equilibrium.

In a recent work to appear in Physical Review Letters, Laurent Corté and collaborators from Mines-ParisTech, France, and New York University, Cornell University, and San Francisco State University, all in the US, report self-organized criticality in suspensions of sedimenting particles undergoing periodic shear. The new experiment builds on an earlier observation of a continuous phase transition between an absorbing state (at small shear rates and/or low concentrations) where particles return to their original positions after each shear cycle and an active state (in the opposite limit) where particle positions change randomly. Corté et al. use particles slightly denser than the surrounding fluid; in the absence of shear, a dense sediment forms at the bottom. Applying shear, the suspension is attracted to its critical state since, when the concentration is less than critical, particles are inactive and sediment, increasing the concentration, whereas for concentrations above critical, activity tends to spread the particles over a larger range of heights, reducing the density. This observation of SOC opens a new route to explore properties of out-of-equilibrium critical phenomena. – Ronald Dickman


Announcements

More Announcements »

Subject Areas

Statistical Physics

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Maxwell’s Demon Meets Nonequilibrium Quantum Thermodynamics
Statistical Physics

Viewpoint: Maxwell’s Demon Meets Nonequilibrium Quantum Thermodynamics

A new implementation of a Maxwell’s demon can control entropy production in a quantum-mechanical system that is driven out of thermal equilibrium. Read More »

Viewpoint: Relaxons Heat Up Thermal Transport
Materials Science

Viewpoint: Relaxons Heat Up Thermal Transport

A recasting of the theory that underlies thermal transport in electrical insulators relies on new vibrational modes called relaxons. Read More »

Synopsis: Get the Hydrogen Out
Industrial Physics

Synopsis: Get the Hydrogen Out

Using clean helium made with a two-step purification process could prevent damaging blockages in cryostats. Read More »

More Articles