Synopsis: A scaffold for soft matter

The interfaces between a mixture of two liquids act as support structures for making a colloidal gel.
Synopsis figure
Illustration: E. Sanz et al., Phys. Rev. Lett. (2009)

Several years ago, Michael Cates’ group at the University of Edinburgh, UK, predicted that the interfaces between liquids could act as loci for colloidal particles to aggregate and solidify during liquid-liquid phase separation [1]. Now, writing in Physical Review Letters, Cates and his group, including Eduardo Sanz, Kathryn White, and Paul Clegg, investigate what is necessary to keep the colloidal particles from redissolving, even after the liquids remix.

The scaffold for the colloidal particles (500nm spheres of silica) is a binary mixture of water and 2,6-lutidine. When the liquid is warm, it phase separates into lutidine-rich and lutidine-poor regions, and the particles, which have an equal affinity for both liquids, move toward the interfaces between these two regions. Over time, the particles jam together to form a glassy state that is locally layered, but stretches throughout the volume of the liquid.

In principle, this way of templating colloidal structures could be useful within volumes that only fluids could reach, but what happens if the liquid scaffold is removed? The Edinburgh group finds experimentally that if the colloidal gel is allowed to age for some time after it forms, it will last even after the liquid is cooled and remixes into a single phase. They predict with simulations that a combination of short-range attractive and long-range repulsive interactions between the particles can lock the gel’s structure. Their findings open the possibility of being able to shape and reshape a templated colloidal structure, which may have applications in tissue scaffolding or drug delivery, with thermal cycling alone. – Jessica Thomas

[1] K. Stratford et al., Science 309, 5744 (2005).


Announcements

More Announcements »

Subject Areas

Soft Matter

Previous Synopsis

Related Articles

Focus: Oil-Water Droplets Form Surprising Structures
Soft Matter

Focus: Oil-Water Droplets Form Surprising Structures

Water droplets can self-assemble into a range of structures inside larger drops of oil, with potential uses in targeted drug delivery and biological tissue engineering. Read More »

Synopsis: Electrically Dancing Colloids
Soft Matter

Synopsis: Electrically Dancing Colloids

An applied electric field could reconfigure the structure of colloidal defects dispersed within a liquid crystal. Read More »

Synopsis: Thinner Stealth Coatings
Soft Matter

Synopsis: Thinner Stealth Coatings

Antireflective acoustic coatings for hiding submarines and other watercraft could be made much thinner than those in use today. Read More »

More Articles