Synopsis: Ordering in hydrogen under high pressure

Molecular dynamics studies indicate a new phase of liquid hydrogen under high pressure.
Synopsis figure
Illustration: I. Tamblyn et al., Phys. Rev. Lett. (2010).

The behavior of hydrogen under pressure affects fields ranging from condensed matter physics to astrophysics. Compressed liquid hydrogen exhibits a molecular-to-atomic transition. However, despite several experiments, the theoretical debate on the nature of this transition, in particular whether it is a continuous or discontinuous (first-order) transition, has not yet been settled.

In an article in Physical Review Letters, Isaac Tamblyn and Stanimir Bonev of Dalhousie University in Nova Scotia, Canada, employ molecular dynamics to map the phase diagram of dense hydrogen over a large range of temperatures and pressures. Their findings suggest an unreported phase in the liquid with short-ranged orientational order, resulting from a transition that they predict should occur in the liquid above 100GPa. This new phase may explain certain characteristics of the molecular-to-atomic transition, the shape of the melting line, as well as the structure of hydrogen mixtures. The authors argue that a first-order transition is likely, and the new insight provided should spur future experimental work. – Sami Mitra


More Features »


More Announcements »

Subject Areas

Fluid Dynamics

Next Synopsis

Atomic and Molecular Physics

Rotating condensates show new vortex behavior

Read More »

Related Articles

Synopsis: Superfluid Storm at a Surface
Fluid Dynamics

Synopsis: Superfluid Storm at a Surface

Numerical simulations indicate that boundary layers, normally the preserve of conventional fluids flowing past solid surfaces, can also arise in superfluids.   Read More »

Synopsis: How Ice Bridges Form

Synopsis: How Ice Bridges Form

New theoretical work predicts the conditions under which sea ice will clog a narrow channel to create a natural bridge across it. Read More »

Viewpoint: Searching for Order in Turbulent Flow
Fluid Dynamics

Viewpoint: Searching for Order in Turbulent Flow

The observation of ordered flow patterns in a weakly turbulent liquid may lead to new ways of predicting the evolution of turbulent flow. Read More »

More Articles