Synopsis: Ordering in hydrogen under high pressure

Molecular dynamics studies indicate a new phase of liquid hydrogen under high pressure.
Synopsis figure
Illustration: I. Tamblyn et al., Phys. Rev. Lett. (2010).

The behavior of hydrogen under pressure affects fields ranging from condensed matter physics to astrophysics. Compressed liquid hydrogen exhibits a molecular-to-atomic transition. However, despite several experiments, the theoretical debate on the nature of this transition, in particular whether it is a continuous or discontinuous (first-order) transition, has not yet been settled.

In an article in Physical Review Letters, Isaac Tamblyn and Stanimir Bonev of Dalhousie University in Nova Scotia, Canada, employ molecular dynamics to map the phase diagram of dense hydrogen over a large range of temperatures and pressures. Their findings suggest an unreported phase in the liquid with short-ranged orientational order, resulting from a transition that they predict should occur in the liquid above 100GPa. This new phase may explain certain characteristics of the molecular-to-atomic transition, the shape of the melting line, as well as the structure of hydrogen mixtures. The authors argue that a first-order transition is likely, and the new insight provided should spur future experimental work. – Sami Mitra


Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Next Synopsis

Atomic and Molecular Physics

Rotating condensates show new vortex behavior

Read More »

Related Articles

Synopsis: Staying Cool in Outer Space
Astrophysics

Synopsis: Staying Cool in Outer Space

In the absence of gravity, surface tension forces affect how fluids flow in heat pipes and may limit the device’s cooling performance on spacecraft missions. Read More »

Synopsis: Bubbles Pop, Droplets Don’t
Fluid Dynamics

Synopsis: Bubbles Pop, Droplets Don’t

A new technique can unambiguously identify nanobubbles living on the surface of a submerged object. Read More »

Synopsis: Waste Disposal in Aquatic Embryos
Fluid Dynamics

Synopsis: Waste Disposal in Aquatic Embryos

Protrusions on the surfaces of developing aquatic embryos may ensure that waste and toxins are effectively transported away from the organism. Read More »

More Articles