Synopsis: Designer photon lifetimes

Short and long photon lifetimes have been custom engineered in a resonant microwave cavity.
Synopsis figure
Illustration: J. P. Leek et al., Phys. Rev. Lett. (2010)

Several proposals for quantum information processing rely on precise control of photon lifetimes and the interactions between atoms and light. This can be achieved by cavity quantum electrodynamics—storing and studying light in a high-quality resonant structure. Ideally, one would want to store photons in such elements for a long time, but then read out the state of the stored mode quickly. With an eye toward scalable quantum computing devices, some of these capabilities have been implemented at microwave wavelengths on microfabricated chips in the form of “circuit QED.”

Writing in Physical Review Letters, Peter Leek and colleagues at the Eidgenössische Technische Hochschule in Zürich, Switzerland, report their ability to engineer very different photon lifetimes in two resonant modes of the same on-chip cavity. The trick used to achieve this is to couple radiation in and out of the center of the cavity, where only the full wavelength modes have a nonzero electric field. Sideband transitions couple qubits in the cavity to various resonant modes. Leek et al. observed a stored photon with a lifetime of 1.45 microseconds in one mode, while the readout mode exhibited a lifetime of only 39 nanoseconds. In addition to photon storage, Leek et al. were able to create Fock states (photon number coherent states) and Bell states (nonlocal entangled states), all essential steps toward useful quantum information processing building blocks. – David Voss


More Announcements »

Subject Areas

Quantum Information

Previous Synopsis

Soft Matter

Entangled in tubes

Read More »

Next Synopsis

Fluid Dynamics

Drying out in 3D

Read More »

Related Articles

Viewpoint: Hiding a Quantum Cache in Diamonds
Quantum Information

Viewpoint: Hiding a Quantum Cache in Diamonds

Entanglement purification, a vital enabler for practical quantum networks, has been shown to be feasible with secluded nuclear memories in diamond. Read More »

Viewpoint: Classical Simulation of Quantum Systems?

Viewpoint: Classical Simulation of Quantum Systems?

Richard Feynman suggested that it takes a quantum computer to simulate large quantum systems, but a new study shows that a classical computer can work when the system has loss and noise. Read More »

Focus: <i>Landmarks</i>—Correcting Quantum Computer Errors
Quantum Physics

Focus: Landmarks—Correcting Quantum Computer Errors

In the mid-1990s, researchers proposed methods to preserve the integrity of quantum bits—techniques that may become the key to practical quantum computing on a large scale. Read More »

More Articles