Synopsis

In thin air

Physics 3, s50
The principles of nonequilibrium thermodynamics simplify the statistical description of the flow of a rarefied gas.

In a sufficiently rarefied gas, the tools of standard hydrodynamics, namely, the Navier-Stokes-Fourier equations (based on Newton’s second law applied to fluid motion), no longer apply. On the other hand, tracking the statistics of individual molecules, as is done in Boltzmann’s kinetic equation approach, is computationally prohibitive.

Writing in Physical Review Letters, Hans Christian Öttinger at the ETH in Zurich, Switzerland, strengthens a description of rarefied gas flow that is intermediate between these two extremes. Previous work showed that Boltzmann’s kinetic equation can yield a set of 13 moment equations that describe the momentum of the gas and heat flux within it. In his work, Öttinger looks to the laws of nonequilibrium thermodynamics to provide the necessary constraints on the equations. For example, entropy is conserved in reversible processes and standard hydrodynamics is recovered in the limiting case.

The results could advance efforts—particularly those based on numerical calculations—to describe the kinetics of nonequilibrium gases. These calculations are important for understanding gas flow in the smallest of channels—as in microfluidics—and aerodynamics of satellites and space stations in the outer limits of our atmosphere. – Jessica Thomas


Subject Areas

Statistical Physics

Related Articles

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Nonreciprocal Frustration Meets Geometrical Frustration
Nonlinear Dynamics

Nonreciprocal Frustration Meets Geometrical Frustration

New theoretical work establishes an analogy between systems that are dynamically frustrated, such as glasses, and thermodynamic systems whose members have conflicting goals, such as predator–prey ecosystems. Read More »

Failed Barrier Crossings Tell a Story
Statistical Physics

Failed Barrier Crossings Tell a Story

Researchers have measured short-timescale fluctuations in metastable systems, uncovering information about failed attempts to cross the barriers that define the metastable state. Read More »

More Articles