Synopsis: Spin-triplet supercurrents in a magnetic Josephson junction

With a clever design of a ferromagnetic Josephson junction, it is possible to observe a theoretically predicted, but difficult to measure, spin-triplet supercurrent.
Synopsis figure
Illustration: Courtesy of N. Birge

If a conventional superconductor is brought into contact with a normal metal, superconducting pair correlations penetrate into the metal, a process known as the superconducting proximity effect. If the metal is instead ferromagnetic, the penetration of superconducting pairs, which typically form spin-singlets, is much shorter. Theoretically, however, if the ferromagnet is inhomogeneous, then spin-triplet electron pairs would appear at the superconductor-ferromagnet interface that could penetrate further into the ferromagnet.

In a paper appearing in Physical Review Letters, Trupti Khaire, Mazin Khasawneh, William Pratt, Jr., and Norman Birge of Michigan State University in the US have constructed an ingenious superconductor-ferromagnet-superconductor Josephson junction to look for such a spin-triplet current. Their trick is to construct the ferromagnetic layer from a multilayered sandwich of weak and strong transition-metal magnetic layers. The complicated magnetic layer is necessary to create a noncollinear magnetic environment for the Cooper pairs from the superconductor, which is required to generate the spin-triplet pairs. The layer also suppresses the spin-singlet supercurrent, thereby making the spin-triplet current easier to detect. Khaire et al. find a spin-triplet supercurrent that depends on magnetic layer thickness, and persists for at least several tens of nanometers. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

MagnetismSuperconductivity

Previous Synopsis

Atomic and Molecular Physics

Something magic in the alkalis

Read More »

Next Synopsis

Soft Matter

Entangled in tubes

Read More »

Related Articles

Synopsis: Superconductivity Model Misses Its Target
Superconductivity

Synopsis: Superconductivity Model Misses Its Target

Researchers have added dopant atoms to a quantum spin liquid in an effort to make it superconduct, but the material upended theory by remaining an insulator. Read More »

Focus: Nobel Prize—Topological Phases of Matter
Condensed Matter Physics

Focus: Nobel Prize—Topological Phases of Matter

The 2016 Nobel Prize in Physics was awarded to theoretical physicists whose work established the role of topology in understanding exotic forms of matter. Read More »

Focus: Electric Power from the Earth’s Magnetic Field
Magnetism

Focus: Electric Power from the Earth’s Magnetic Field

A loophole in a result from classical electromagnetism could allow a simple device on the Earth’s surface to generate a tiny electric current from the planet’s magnetic field. Read More »

More Articles