Synopsis: Turning to the dark side

Electromagnetically induced transparency produced by dark states in an artificial atom might find use as a switchable microwave mirror.
Synopsis figure
Illustration: A. Abdumalikov et al., Phys. Rev. Lett. (2010)

Under the right conditions, quantum interference of different pathways for excitation of energy levels in an atom can lead to electromagnetically induced transparency (EIT). When this happens, an otherwise optically active atomic transition is converted into a “dark state” that does not absorb photons, making the atomic medium transparent to light. This phenomenon has been demonstrated experimentally over the past two decades in atomic and molecular gases, solid-state materials, and microscopic systems such as quantum dots. Now, Abdufarrukh Abdumalikov and colleagues at RIKEN and NEC Nano Electronics Research Labs in Japan and Loughborough University in the UK report in Physical Review Letters their success in achieving EIT in a macroscopic artificial atom.

Although feasible, obtaining strong coupling of electromagnetic modes and individual molecules or quantum dots is difficult, so structures made with superconducting circuits in the form of 1D transmission lines are a possible approach. The system studied by Abdumalikov et al. consists of a 1 micron superconducting loop, broken by Josephson junction devices, which exhibits a ladder of atomlike energy levels with transition frequencies in the microwave range. Application of a control signal coupling two energy levels induces EIT, as observed in measurements of reflection and transmission of a probe signal. With modulation approaching 100%, the EIT effect in a macroscopic artificial atom may find use as a switchable microwave mirror. – David Voss


Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsOptics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Superfast laser cooling

Read More »

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Synopsis: Controlling a Laser’s Phase
Optics

Synopsis: Controlling a Laser’s Phase

A compact scheme can directly modulate the phase of a laser without a bulky external modulator. Read More »

Focus: Chip Changes Photon Color While Preserving Quantumness
Photonics

Focus: Chip Changes Photon Color While Preserving Quantumness

A new device that can potentially be scaled up for quantum computing converts visible light to infrared light suitable for fiber-optic transmission without destroying the light’s quantum state. Read More »

More Articles