Synopsis: Pressure dulls shiny metals

At high pressure, the simple metal sodium shows complex behavior, including directional transparency.
Synopsis figure
Illustration: M. Gatti et al., Phys. Rev. Lett. (2010)

High pressure can radically change the behavior of simple substances. Consider sodium. At ambient pressures it has a symmetric crystal structure. Under large enough pressure, it changes from a shiny metal to a transparent insulator with several low-symmetry crystal structures. At very high pressures, the core electrons overlap and, because of the Pauli exclusion principle, give rise to less symmetric charge distributions. Coulomb repulsion between core and valence electrons localize charge in interstitial positions instead of at the nuclei, eventually leading to an insulating state.

In a paper published in Physical Review Letters, Matteo Gatti, Ilya Tokatly, and Angel Rubio, from Universidad del País Vasco and the Basque Foundation for Science, both in Spain, and the Fritz-Haber-Institut der Max-Planck-Gesellschaft, Germany, use first-principles calculations to analyze the optical response of sodium under high pressure. They find that an unusual kind of electron-hole pair—an exciton—rises from the interstitial charge localization. The authors predict that at pressures above the metal-insulator transition, sodium should be transparent in one polarization direction but reflective, like a normal metal, in the other. Photoluminescence experiments along the two axes of polarization should elucidate the nature of the bound exciton as well as the crystal structure at high pressures. – Daniel Ucko


More Announcements »

Subject Areas

OpticsMaterials Science

Previous Synopsis

Atomic and Molecular Physics

Entropy and order in optical lattices

Read More »

Next Synopsis

Biological Physics

Copying DNA despite defects

Read More »

Related Articles

Viewpoint: Relaxons Heat Up Thermal Transport
Materials Science

Viewpoint: Relaxons Heat Up Thermal Transport

A recasting of the theory that underlies thermal transport in electrical insulators relies on new vibrational modes called relaxons. Read More »

Synopsis: Hydrogen  Bonding Comes to the Rescue
Chemical Physics

Synopsis: Hydrogen Bonding Comes to the Rescue

Hydrogen bonding may safeguard biomolecules against the damaging effects of UV light. Read More »

Viewpoint: Cold Results from Fast Lasers

Viewpoint: Cold Results from Fast Lasers

Ultrafast lasers show promise to cool down and trap atomic species inaccessible to more traditional methods. Read More »

More Articles