Synopsis

Quantum phase transitions via holographic duality

Physics 3, s99
String dualities are exploited to find a quantum phase transition in two spatial dimensions with non-mean-field exponents.
Illustration: Alan Stonebraker

The rich toolkit of string dualities makes it possible to map problems involving strongly interacting particles to an equivalent problem involving string theories in curved spacetime backgrounds, where explicit analytical computations often become feasible. A question of great general interest is what light this dual formulation sheds on the physics of phase transitions. Typically, string theoretic or holographic descriptions lead to phase transitions that are first or second order with mean-field exponents; a hallmark of mean-field behavior. A natural question to ask is whether there is a string theoretic mechanism that can lead to phase transitions that are not described by mean-field theories.

In a paper in Physical Review Letters, Kristan Jensen, Andreas Karch, Dam Son, and Ethan Thompson from the University of Washington, US, show that Berezinsky-Kosterlitz-Thouless (BKT) phase transitions, characterized by exponential as opposed to power-law scaling of the order parameter, are generic to a large class of models in three spacetime dimensions possessing a dual string description. The phase transition reported in the paper occurs at zero temperature making it quantum in nature. This rather general result can be expected to shed fresh insight into the somewhat mysterious nature of the BKT phase transitions and have ramifications for various nonrelativistic and relativistic many-body systems. – Abhishek Agarwal


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles