Synopsis: Cosmic question

Where do cosmic magnetic fields come from?
Synopsis figure
Credit: R. Kennicutt (Steward Observatory, Univ. of Arizona)/NASA

The origin of the magnetic fields observed in galaxies and galaxy clusters is one of the outstanding problems in cosmology. Although the amplification of weak “seed” magnetic fields, via the turbulent dynamo mechanism in conducting fluids or plasmas [1], is quite well understood, how the seed itself forms has remained a serious challenge. In ideal fluid dynamics, a topological constraint prohibits the emergence of a magnetic field, or, more generally, a vorticity, from a zero-field state. This leaves the question: How can an initially magnetic-field-less cosmological fluid give rise to a nonzero seed field?

Various scale-specific solutions to this problem have been proposed, usually employing non-ideal fluid dynamics. In an article appearing in Physical Review Letters, Swadesh Mahajan of the University of Texas, US, and Zensho Yoshida of the University of Tokyo, Japan, demonstrate a universal vorticity-generating mechanism using ideal, but relativistic, fluid dynamics. They show that special relativity breaks the topological constraint against the emergence of vorticity, even for mildly relativistic fluid flows. Their finding could lead to a better understanding of the origin of magnetic fields in the Universe. – Jerome Malenfant

[1] L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002).


Announcements

More Announcements »

Subject Areas

CosmologyFluid DynamicsPlasma Physics

Previous Synopsis

Materials Science

Cracking the case on fracture

Read More »

Next Synopsis

Particles and Fields

Uncertain sources

Read More »

Related Articles

Viewpoint: The First Sounds of Merging Black Holes
Cosmology

Viewpoint: The First Sounds of Merging Black Holes

Gravitational waves emitted by the merger of two black holes have been detected, setting the course for a new era of observational astrophysics. Read More »

Synopsis: A Little Empty Inside
Cosmology

Synopsis: A Little Empty Inside

A new model has allowed researchers to test a theory for why the centers of dark matter halos are less dense than expected. Read More »

Viewpoint: Some Assembly Required
Cosmology

Viewpoint: Some Assembly Required

The clumping of galaxies and galaxy clusters has a subtle dependence on their assembly history—a predicted effect that has now been detected. Read More »

More Articles