Synopsis: No more orders, please!

An optical fiber facilitates the transfer of energy from one laser beam to another in a nonlinear process that suppresses higher-order scattering.
Synopsis figure
Credit: M. S. Kang, Phys. Rev. Lett. (2010)

Confining light to tiny regions in space enhances its interaction with matter, leading to a host of phenomena, from surface-enhanced Raman scattering on metal surfaces to nonlinear effects in optical fibers.

Writing in Physical Review Letters, Myeong Soo Kang, Andre Brenn, and Philip Russell from the Max-Planck-Institute for the Science of Light in Erlangen, Germany, demonstrate how to harness the effects of confinement to generate a nonlinear optoacoustic effect in nanostructured photonic crystal fibers. They launch two orthogonally polarized laser beams through a birefringent fiber, in a setup that allows them to tune the frequency difference between the two beams. When this frequency offset is at a resonance, the laser pair excites a tightly confined acoustic mode in the fiber core, causing the fiber to vibrate. The acoustic mode borrows its energy from the higher frequency beam, which acts as a pump signal, and eventually transfers it to the lower frequency (Stokes) beam. This transfer of energy is similar to what happens in Raman scattering, but is designed so that no higher or lower frequency modes are excited as the optical power is increased. The result is a highly selective power transfer from the pump to the Stokes signal that occurs at a unique frequency and can be 97% efficient, in some cases.

This effect, which the authors call forward stimulated interpolarization scattering, or SIPS, may find applications in optical amplifiers, signal processing, and optical sensing. – Manolis Antonoyiannakis


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Strongly Correlated Materials

A more perfect Dirac cone

Read More »

Next Synopsis


Cosmic backtracking

Read More »

Related Articles

Synopsis: Getting Plasma in a Twist

Synopsis: Getting Plasma in a Twist

Laser vortex beams can exchange their optical angular momentum with a plasma from which they are reflected. Read More »

Synopsis: Starting Fluid for Laser Fusion
Energy Research

Synopsis: Starting Fluid for Laser Fusion

A laser-based fusion experiment demonstrates that liquid fuel capsules could rectify problems encountered with ice-based fuel capsules. Read More »

Synopsis: Graphene’s Elegant Optics Explained

Synopsis: Graphene’s Elegant Optics Explained

Theoretical calculations anchor graphene’s simple optical absorption in its two-dimensional structure instead of its cone-shaped energy bands. Read More »

More Articles