Synopsis

Hold the ketchup

Physics 3, s144
A different take on shearing forces in gooey fluids provides a better description of viscoelasticity.
Credit: Sami Mitra

If we fill the space between two horizontal plates with a fluid and then move the top plate sideways, we say that the fluid is subject to a shearing force. Viscoelasticity determines how a fluid flows or deforms when a shearing force is applied. “Complex” (non-Newtonian) fluids—pudding, blood, ketchup, toothpaste—are often described as “squishy” or “gooey.” For such fluids, viscoelasticity depends, in a mathematically complex way, on the magnitude of the applied force.

Aditya Khair and Todd Squires, writing in Physical Review Letters, propose a new technique in active microrheology, in which two micron-sized particles are pulled through a complex fluid. The pulling force between the particles is used to determine the nonlinear properties of the fluid viscoelasticity. The authors show that, in principle, varying the pulling speed and direction, as well as the particle spacing, allows for direct measurement of the nonlinear viscoelasticity. They expect the proposed technique to work on a variety of complex fluids, thus opening a new direction in microrheology. – Jane Throwe


Subject Areas

Soft Matter

Related Articles

Witnessing the Birth of Skyrmions
Condensed Matter Physics

Witnessing the Birth of Skyrmions

Using thin layers of chiral nematic liquid crystals, researchers have observed the formation dynamics of skyrmions. Read More »

Prizes for Videos Featuring Mickey Mouse and Laptop Cables
Fluid Dynamics

Prizes for Videos Featuring Mickey Mouse and Laptop Cables

The winners of the third annual “Gallery of Soft Matter” competition included posters portraying robotic leaves and cannibalizing droplets and a video with what might be Steamboat Willie’s first appearance at the APS March Meeting. Read More »

Smooth Control of Active Matter
Soft Matter

Smooth Control of Active Matter

A theoretical study finds that the most energy-efficient way to control an active-matter system is to drive it at finite speed—unlike passive-matter systems. Read More »

More Articles