Synopsis: Unexpected error

Elastic scattering may be a larger source of qubit error than previously thought.
Synopsis figure
Credit: H. Uys et al., Phys. Rev. Lett. (2010)

The same lasers that trap, cool, and manipulate atoms or ions to make qubits can cause them to lose coherence. The reason is that when light scatters from an atom, it carries away information about the atom by encoding it in the form of frequency (inelastic scattering, which changes the energy) or phase (elastic scattering, which doesn’t change energy but does disrupt the wave function).

Elastic, or Rayleigh, scattering has mostly been ignored as a source of qubit decoherence or “error,” but in a paper appearing in Physical Review Letters, Hermann Uys, now at the National Laser Centre in Pretoria, South Africa, and colleagues at NIST and JILA in the US and the Weizmann Institute in Israel present new calculations, backed by experiments, that point to cases where this assumption is wrong.

Uys et al. calculate the probability that an atomic qubit, which can be in a high-energy, spin “up” state or a low-energy, spin “down” state, will elastically scatter a photon of a particular frequency, and identify a window of frequencies where the two states’ combined elastic scattering is a significant source of decoherence. As proof of their model, they laser-cool a lattice of beryllium ions that, in a magnetic field, act as spin “up” or “down” qubits. The group prepares the ions in a particular spin state and then exposes them to a tunable laser. This allows them to measure the experimental conditions where elastic scattering of the laser light from the beryllium atoms causes the encoded spin information to be most rapidly lost.

Uys et al.’s new insight will be an important addition to the checklist of error sources in quantum information experiments with trapped atoms. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Quantum Information

Towards a handheld optical table

Read More »

Next Synopsis

Related Articles

Synopsis: Position Detector Approaches the Heisenberg Limit
Quantum Physics

Synopsis: Position Detector Approaches the Heisenberg Limit

The light field from a microcavity can be used to measure the displacement of a thin bar with an uncertainty that is close to the Heisenberg limit. Read More »

Viewpoint: Next Generation Clock Networks
Atomic and Molecular Physics

Viewpoint: Next Generation Clock Networks

Free-space laser links have been used to synchronize optical clocks with an unprecedented uncertainty of femtoseconds. Read More »

Focus: How to Make an Intense Gamma-Ray Beam
Optics

Focus: How to Make an Intense Gamma-Ray Beam

Computer simulations show that blasting plastic with strong laser pulses could produce gamma rays with unprecedented intensity, good for fundamental physics experiments and possibly cancer treatments. Read More »

More Articles