Synopsis

Towards a handheld optical table

Physics 3, s158
A new optical component for integrated photonic circuits could prove helpful for applications that store and transmit the information contained in linearly polarized light.
Credit: L. Sansoni et al., Phys. Rev. Lett. (2010)

A typical quantum optics experiment takes place in a laboratory filled with numerous freestanding components mounted to an optical table.  All of these optical elements require careful alignment and stabilization—a limitation that could be overcome by instead embedding the optical components on a single rigid structure, such as a chip.

Writing in Physical Review Letters, Linda Sansoni and colleagues at Sapienza Universitá di Roma and collaborators at several institutes in Italy describe a beam splitter they fabricated in a glass structure for use in an integrated photonic circuit on a chip. A beam splitter, which separates one beam into two, is often an essential component for optical experiments. To make the beam splitter, they focused femtosecond infrared laser pulses on borosilicate glass and etched pathways for the input light.  By measuring input and output light for nonentangled and entangled photon states, the group showed that their device preserves the polarization of the input light.

The polarization-preserving feature of Sansoni et al.’s device makes it potentially useful for tasks like cryptography and linear optics quantum computing that are based on the information stored in the polarization of light. – Sonja Grondalski


Subject Areas

Quantum Information

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Erasure Qubits for Abridged Error Correction
Quantum Information

Erasure Qubits for Abridged Error Correction

Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers. Read More »

More Articles