Synopsis

Reality, locality, and “free will”

Physics 4, s1
By relaxing certain assumptions, it is possible to describe quantum correlations as both local and real.

In 1964, John Bell devised a testable prediction (now known as Bell’s inequality) based on two reasonable assumptions: that the measurement of one particle cannot instantaneously influence another, distant particle (locality) and that particles have properties before you measure them (reality).  Numerous experiments have since shown that Bell’s inequality is violated, forcing one to conclude that, contrary to the view held by Einstein, Podolsky, and Rosen, quantum mechanics cannot be both local and real.

But what of other assumptions built into Bell’s inequality?  In a paper appearing in Physical Review Letters, Michael Hall at the Australian National University in Canberra considers an assumption, called measurement independence, in the following experimental paradigm: A source emits two particles in an entangled state and sends them to two distant laboratories, where two experimenters randomly choose apparatus settings that measure a system property.  The measurement outcomes can be correlated in a way that violates Bell’s inequality, but measurement independence assumes that the experimenters freely choose apparatus settings, independent of any properties of the systems that they measure.  By relaxing this assumption, Michael Hall constructs a local and real model that describes the correlations of the experiment.  He shows that locality and reality can be retained with a 14% reduction of the experimenters’ “free will”—that is, the assumption of measurement independence need not be given up completely. – Sonja Grondalski


Subject Areas

Quantum Information

Related Articles

Enhanced Interactions Using Quantum Squeezing
Quantum Information

Enhanced Interactions Using Quantum Squeezing

A quantum squeezing method can enhance interactions between quantum systems, even in the absence of precise knowledge of the system parameters. Read More »

How to Speed up a Quantum Network
Quantum Information

How to Speed up a Quantum Network

Sending photons to a remote site in groups should allow quantum links to be more rapidly established across future quantum networks than if photons are sent one at a time. Read More »

Erasure Qubits for Abridged Error Correction
Quantum Information

Erasure Qubits for Abridged Error Correction

Researchers have realized a recently proposed qubit in which the errors mostly involve erasure of the qubit state, an advance that could help simplify the architecture of fault-tolerant quantum computers. Read More »

More Articles