Synopsis: Putting the squeeze on bilayer graphene

Measurements of the charge carrier response of suspended bilayer graphene flakes help identify which theoretical picture best describes the material at zero field.
Synopsis figure
Credit: J. Martin et al., Phys. Rev. Lett. (2010)

Bilayer graphene consists of two graphene sheets stacked on top of each other. In this form of graphene, the presence of collective many-body effects leads to new physics—different from that of single-layer graphene or other two-dimensional electron gas systems.

Theory predicts several phases with broken symmetry for bilayer graphene at zero magnetic field, including spontaneous charge transfer between layers, nematic ordering, ferroelectric domains, and an anomalous quantum Hall state. Not all of these phases are consistent with bilayer graphene having an energy gap at zero magnetic field, so showing the gap exists would rule out some of the possibilities.

Writing in Physical Review Letters, Jens Martin and colleagues at Harvard University probe the charge carriers in a suspended flake of bilayer graphene with a scanning single-electron transistor. They measure the electric incompressibility of the graphene, defined as the change in chemical potential with charge carrier density. From this, they find that the quantum Hall energy gaps do not vanish at zero field, but instead merge into an incompressible region near the charge neutrality point, indicating the presence of an ordered state. Martin et al.’s measurements narrow down the possible description of graphene to either an anomalous quantum Hall state or a nematic phase, though further studies will be needed to choose between the two. – Daniel Ucko


More Announcements »

Subject Areas


Previous Synopsis

Atomic and Molecular Physics

Wind blowing over an ultracold sea

Read More »

Next Synopsis

Related Articles

Synopsis: Jiggling Graphene

Synopsis: Jiggling Graphene

The random quivering of graphene membranes could be exploited to generate electricity. Read More »

Viewpoint: Chasing the Exciton Condensate
Semiconductor Physics

Viewpoint: Chasing the Exciton Condensate

Unusual interactions between charges have been observed in two closely separated graphene bilayers, a promising system in which to create a condensate of electron-hole pairs. Read More »

Focus: New Form of Carbon Stores Lots of Gas

Focus: New Form of Carbon Stores Lots of Gas

Carbon honeycomb, a new carbon structure, could store large amounts of hydrogen gas, which may benefit fuel cell technology. Read More »

More Articles