Synopsis

Putting the squeeze on bilayer graphene

Physics 3, s178
Measurements of the charge carrier response of suspended bilayer graphene flakes help identify which theoretical picture best describes the material at zero field.
Credit: J. Martin et al., Phys. Rev. Lett. (2010)

Bilayer graphene consists of two graphene sheets stacked on top of each other. In this form of graphene, the presence of collective many-body effects leads to new physics—different from that of single-layer graphene or other two-dimensional electron gas systems.

Theory predicts several phases with broken symmetry for bilayer graphene at zero magnetic field, including spontaneous charge transfer between layers, nematic ordering, ferroelectric domains, and an anomalous quantum Hall state. Not all of these phases are consistent with bilayer graphene having an energy gap at zero magnetic field, so showing the gap exists would rule out some of the possibilities.

Writing in Physical Review Letters, Jens Martin and colleagues at Harvard University probe the charge carriers in a suspended flake of bilayer graphene with a scanning single-electron transistor. They measure the electric incompressibility of the graphene, defined as the change in chemical potential with charge carrier density. From this, they find that the quantum Hall energy gaps do not vanish at zero field, but instead merge into an incompressible region near the charge neutrality point, indicating the presence of an ordered state. Martin et al.’s measurements narrow down the possible description of graphene to either an anomalous quantum Hall state or a nematic phase, though further studies will be needed to choose between the two. – Daniel Ucko


Subject Areas

Graphene

Related Articles

Graphene Has Topological Phonons
Condensed Matter Physics

Graphene Has Topological Phonons

New experiments reveal graphene’s exotic phonon spectrum with unprecedented detail and completeness. Read More »

Friction That Speeds Up an Object’s Motion
Graphene

Friction That Speeds Up an Object’s Motion

A friction-like quantum force could accelerate the motion of a rotating nanometer-diameter sphere when the sphere sits next to a graphene-coated surface.   Read More »

Giving Graphene a New Edge
Optics

Giving Graphene a New Edge

A photonic version of graphene hosts never-before-seen “twig” edge states—which could provide new avenues for realizing topological phases in graphene-like materials. Read More »

More Articles