Synopsis: Making waves

Surface waves in a trough of flowing water provide an analog system in which to study Hawking radiation.
Synopsis figure
Credit: S. Weinfurtner et al., Phys. Rev. Lett. (2010)

In 1974 Hawking predicted that black holes emit radiation. A pair of photons is torn apart by the gravitational field near a black hole; one is consumed by it, the other escapes.

The radiation is likely too weak to detect, but in a paper in Physical Review Letters, Silke Weinfurtner and colleagues at the University of British Columbia, Canada, present an experimental demonstration of so-called analog black-hole radiation, providing a “table-top” system in which to test Hawking’s ideas.

Weinfurtner et al. created a “white hole” for surface waves in a shallow trough of flowing water. (In gravity terms, light cannot enter a white hole.) The speed of the water over an airfoil-shaped obstacle blocked the waves, generated downstream, from traveling upstream. The authors confirmed that shallow surface waves convert into pairs of deep-water waves, analogous to photon pairs. Like in black holes, this analog also emits a thermal spectrum of radiation.

While analog experiments do not measure actual black holes, they show that Hawking’s arguments apply broadly, and increase our faith in his prediction’s validity for black holes. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

GravitationFluid Dynamics

Previous Synopsis

Astrophysics

Friction in a vacuum

Read More »

Next Synopsis

Semiconductor Physics

Band together

Read More »

Related Articles

Focus: <i>Video</i>—Liquid Drop Bursts into Thousands of Pieces
Soft Matter

Focus: Video—Liquid Drop Bursts into Thousands of Pieces

A drop of water-alcohol mixture on a layer of oil was caught on video bursting into thousands of tiny droplets. Read More »

Synopsis: Plasma Mirror Mimics Evaporating Black Hole
Gravitation

Synopsis: Plasma Mirror Mimics Evaporating Black Hole

A proposal for using an accelerated plasma mirror to study the black hole information paradox elevates a thought experiment into a potential reality.   Read More »

Focus: Nanochannel Could Separate Mixed Fluids
Fluid Dynamics

Focus: Nanochannel Could Separate Mixed Fluids

Calculations show that capillary forces affecting a fluid mixture flowing through a nanochannel could be used to separate the mixture. Read More »

More Articles