Synopsis: Making waves

Surface waves in a trough of flowing water provide an analog system in which to study Hawking radiation.
Synopsis figure
Credit: S. Weinfurtner et al., Phys. Rev. Lett. (2010)

In 1974 Hawking predicted that black holes emit radiation. A pair of photons is torn apart by the gravitational field near a black hole; one is consumed by it, the other escapes.

The radiation is likely too weak to detect, but in a paper in Physical Review Letters, Silke Weinfurtner and colleagues at the University of British Columbia, Canada, present an experimental demonstration of so-called analog black-hole radiation, providing a “table-top” system in which to test Hawking’s ideas.

Weinfurtner et al. created a “white hole” for surface waves in a shallow trough of flowing water. (In gravity terms, light cannot enter a white hole.) The speed of the water over an airfoil-shaped obstacle blocked the waves, generated downstream, from traveling upstream. The authors confirmed that shallow surface waves convert into pairs of deep-water waves, analogous to photon pairs. Like in black holes, this analog also emits a thermal spectrum of radiation.

While analog experiments do not measure actual black holes, they show that Hawking’s arguments apply broadly, and increase our faith in his prediction’s validity for black holes. – Jessica Thomas


More Announcements »

Subject Areas

GravitationFluid Dynamics

Previous Synopsis


Friction in a vacuum

Read More »

Next Synopsis

Semiconductor Physics

Band together

Read More »

Related Articles

Synopsis: Testing Gravity On Solar System Scales

Synopsis: Testing Gravity On Solar System Scales

A proposed space mission would precisely measure deviations from Newtonian gravity on a scale of 100 astronomical units. Read More »

Synopsis: Twisted Fluid Flows
Fluid Dynamics

Synopsis: Twisted Fluid Flows

Liquids can follow twisted paths when flowing through porous media. Read More »

Focus: The Difference Between Round and Square Pipes
Fluid Dynamics

Focus: The Difference Between Round and Square Pipes

Calculations of the motion of particles carried by a fluid flowing through a pipe find a surprising effect of the pipe's shape. Read More »

More Articles