Synopsis: In two places at once

Quantum superpositions of objects consisting of millions of atoms may be achievable with cavity quantum optomechanical techniques.
Synopsis figure
Credit: O. Romero-Isart et al., Phys. Rev. Lett. (2011)

A fundamental feature of quantum physics is superposition of states, such as the double slit experiment in which a particle passes through both slits at the same time to interfere downstream. This kind of spatially separated quantum superposition has been observed for particles from electrons to complex molecules, but what about larger macroscopic systems?

The biggest obstacle is decoherence—preparing and measuring a superposition of so many atoms requires minimizing environmental interactions that would otherwise rapidly destroy this fragile state. Writing in Physical Review Letters, Oriol Romero-Isart from the Max Planck Institute for Quantum Optics in Garching, Germany, and colleagues propose a method for creating and observing quantum superpositions of objects with millions of atoms.

Romero-Isart et al. consider the case of a nanometer-size dielectric sphere, trapped and cooled in an optical cavity, which prepares an initially pure quantum state of the center of mass. The sphere can then be released from the first trap to enter a second cavity, in which a carefully designed laser pulse creates a superposition of the two distinct spatial positions (similar to a double slit). As the superposition evolves in time, measurement of the particle’s center of mass reveals the interference pattern of the two wave functions centered at different locations. The authors note that the achievement of a large superposition of such massive objects should enable more stringent tests of quantum mechanics, especially of theories predicting a spontaneous collapse of the wave function. – David Voss


Announcements

More Announcements »

Subject Areas

Quantum Physics

Previous Synopsis

Interdisciplinary Physics

Stormy seas

Read More »

Next Synopsis

Atomic and Molecular Physics

A new phase for molecular superfluidity

Read More »

Related Articles

Viewpoint: Classical Simulation of Quantum Systems?
Optics

Viewpoint: Classical Simulation of Quantum Systems?

Richard Feynman suggested that it takes a quantum computer to simulate large quantum systems, but a new study shows that a classical computer can work when the system has loss and noise. Read More »

Viewpoint: Measuring Quantum Kicks from a Beam of Light
Optics

Viewpoint: Measuring Quantum Kicks from a Beam of Light

Force sensors levitated by light have reached the quantum regime, in which their sensitivity is limited by the momentum kicks of individual photons. Read More »

Focus: <i>Landmarks</i>—Correcting Quantum Computer Errors
Quantum Physics

Focus: Landmarks—Correcting Quantum Computer Errors

In the mid-1990s, researchers proposed methods to preserve the integrity of quantum bits—techniques that may become the key to practical quantum computing on a large scale. Read More »

More Articles