Synopsis: Out of many atoms, one photon

A gas of excited-state atoms could perform as a single-photon detector.
Synopsis figure
J. Honer, Phys. Rev. Lett. (2011)

Devices that count discrete quanta of light could be the building blocks of sophisticated quantum circuits. Most such counters based on single atoms register a photon only half the time, but in a paper appearing in Physical Review Letters, Jens Honer at the University of Stuttgart, Germany, and his colleagues propose a theoretical multi-atom system that could do the job with a nearly 100% success rate.

Honer et al.’s idea takes advantage of interactions between Rydberg atoms confined to a small trap. In a Rydberg atom, at least one valence electron is in a highly excited state, circling the nucleus with a large radius that mimics a classical orbit. These excited state atoms interact strongly with one another, such that one Rydberg atom in a trap can block other atoms from being excited—an effect called Rydberg blockade.

Honer et al. consider N atoms in a trap, which behave as a sort of superatom. The superatom has N excited states, with one Rydberg excitation collectively shared among the N atoms. Only one of these excited states interacts with light like a two-level system, while N-1 states remain dark. By introducing a second light field that causes dephasing, Honer et al. show that with large fidelity the superatom ends up in one of these N-1 dark states, and consequently greatly enhances the chance of photon absorption. At the same time the Rydberg blockade prevents the absorption of multiple photons within one such atom trap.

A series of these atom trap devices could, according to Horner et al., be used to count the photons in a few-photon light stream. – Jessica Thomas


More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Quantum Information

Pointing toward stability

Read More »

Next Synopsis

Related Articles

Viewpoint: Cool Physics with Warm Ions
Atomic and Molecular Physics

Viewpoint: Cool Physics with Warm Ions

Ultrafast laser pulses can be used to control and characterize the quantum motion of a single trapped ion over 5 orders of magnitude in temperature. Read More »

Synopsis: The Quantum Hall Effect Leaves Flatland
Atomic and Molecular Physics

Synopsis: The Quantum Hall Effect Leaves Flatland

Cold atoms in an optical lattice with a synthetic extra dimension could be used to see the 4D version of the quantum Hall effect.   Read More »

Viewpoint: Emerging Quantum Order in an Expanding Gas
Condensed Matter Physics

Viewpoint: Emerging Quantum Order in an Expanding Gas

The spontaneous emergence of long-range quantum order, normally the preserve of low-temperature equilibrium states, has been observed in an expanding cloud of potassium atoms. Read More »

More Articles