Synopsis: Out of many atoms, one photon

A gas of excited-state atoms could perform as a single-photon detector.
Synopsis figure
J. Honer, Phys. Rev. Lett. (2011)

Devices that count discrete quanta of light could be the building blocks of sophisticated quantum circuits. Most such counters based on single atoms register a photon only half the time, but in a paper appearing in Physical Review Letters, Jens Honer at the University of Stuttgart, Germany, and his colleagues propose a theoretical multi-atom system that could do the job with a nearly 100% success rate.

Honer et al.’s idea takes advantage of interactions between Rydberg atoms confined to a small trap. In a Rydberg atom, at least one valence electron is in a highly excited state, circling the nucleus with a large radius that mimics a classical orbit. These excited state atoms interact strongly with one another, such that one Rydberg atom in a trap can block other atoms from being excited—an effect called Rydberg blockade.

Honer et al. consider N atoms in a trap, which behave as a sort of superatom. The superatom has N excited states, with one Rydberg excitation collectively shared among the N atoms. Only one of these excited states interacts with light like a two-level system, while N-1 states remain dark. By introducing a second light field that causes dephasing, Honer et al. show that with large fidelity the superatom ends up in one of these N-1 dark states, and consequently greatly enhances the chance of photon absorption. At the same time the Rydberg blockade prevents the absorption of multiple photons within one such atom trap.

A series of these atom trap devices could, according to Horner et al., be used to count the photons in a few-photon light stream. – Jessica Thomas


Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Quantum Information

Pointing toward stability

Read More »

Next Synopsis

Related Articles

Focus: Strong Light Reflection from Few Atoms
Optics

Focus: Strong Light Reflection from Few Atoms

Up to 75% of light reflects from just 2000 atoms aligned along an optical fiber, an arrangement that could be useful in photonic circuits. Read More »

Viewpoint: Ionization Delays That Stand Out
Optics

Viewpoint: Ionization Delays That Stand Out

Attosecond-resolution experiments have determined the delay in an electron’s emission from a molecule after being ionized with light. Read More »

Focus: Giant Molecule Made from Two Atoms
Atomic and Molecular Physics

Focus: Giant Molecule Made from Two Atoms

Experiments confirm the existence of 1-micrometer-sized molecules made of two cesium atoms by showing that their binding energies agree with predictions.   Read More »

More Articles