Synopsis

Stop! Slippery water

Physics 4, s133
Ridges and dips provide control of how a drop of liquid, despite extreme mobility, moves on a very hot surface.

When water drops skitter across a griddle, cooks know that it is hot enough to pour on the pancake batter. These “Leidenfrost” drops are separated from the surface by a cushion of vapor that greatly decreases their resistance to motion.

In a paper in Physical Review Letters, Guillaume Dupeux at CNRS ESPCI in Paris, France, and colleagues tell us how to use textured surfaces to control and even immobilize these drops, stopping them within centimeters instead of meters. On a ridged surface, the drops hit the ridges’ sides, losing kinetic energy on impact. Also, drops often fall partly into the grooves and must overcome the resultant potential energy loss in order to continue moving along the surface. Motion stops abruptly when a drop does not have enough kinetic energy to climb the next ridge.

It is possible that water may experience similar effects on unheated superhydrophobic surfaces, on which drops also make ultramobile pearls that could be controlled or trapped using such textures. – Jane Throwe


Subject Areas

Fluid Dynamics

Related Articles

Link Verified between Turbulence and Entropy
Statistical Physics

Link Verified between Turbulence and Entropy

The verification of a 63-year-old hypothesis indicates that nonequilibrium statistical mechanics could act as a theoretical framework for describing turbulence. Read More »

Ocean Measurements Detect Conditions for Giant Waves
Fluid Dynamics

Ocean Measurements Detect Conditions for Giant Waves

Observations of the Southern Ocean show that wind can produce the surface states needed to generate rare “rogue” waves. Read More »

A Supernova Remnant Shaped by Vortices
Fluid Dynamics

A Supernova Remnant Shaped by Vortices

The clumpy structure of a ring of gas ejected by the progenitor star of the supernova 1987A could have formed when vortices in the gas interacted. Read More »

More Articles