Synopsis: Rare pressure

Under very high pressures hydrogen may combine with platinum to produce new structural phases and high-temperature superconductivity.

As a noble metal, platinum is resistant to any change. In particular, it retains its close-packed crystal structure even under extreme conditions, and is commonly used in high-pressure experiments such as those with diamond anvil cells.

Up until recently, platinum was considered to be immune to many types of chemical change as well, including the formation of hydrides. However, recent experiments that combined hydrogen with silicon under high pressure to induce metallization, and possibly high-temperature superconductivity, have led theorists to believe that platinum may respond similarly.

In their paper in Physical Review Letters, Duck Young Kim at the Cavendish Laboratory in Cambridge, England, and colleagues calculate how hydrogen may change the composition and behavior of platinum when the two elements are combined under high pressure. They predict that a tetragonal phase of PtH forms at around 21.5 gigapascals (GPa) of pressure, and at around 7080GPa, a face-centered-cubic phase of the same compound will appear. A superconducting state occurs in the latter (but not the tetragonal) phase.

In addition to being of interest to researchers studying high-pressure physics and superconductivity, this work indicates that the formation of face-centered-cubic metal hydrides under pressure is quite common among noble metal hydrides and that several of them can be superconducting. – Sami Mitra


More Announcements »

Subject Areas

SuperconductivityMaterials Science

Previous Synopsis

Next Synopsis

Complex Systems

Community spirit

Read More »

Related Articles

Viewpoint: Relaxons Heat Up Thermal Transport
Materials Science

Viewpoint: Relaxons Heat Up Thermal Transport

A recasting of the theory that underlies thermal transport in electrical insulators relies on new vibrational modes called relaxons. Read More »

Synopsis: Superconductivity Model Misses Its Target

Synopsis: Superconductivity Model Misses Its Target

Researchers have added dopant atoms to a quantum spin liquid in an effort to make it superconduct, but the material upended theory by remaining an insulator. Read More »

Focus: Nobel Prize—Topological Phases of Matter
Condensed Matter Physics

Focus: Nobel Prize—Topological Phases of Matter

The 2016 Nobel Prize in Physics was awarded to theoretical physicists whose work established the role of topology in understanding exotic forms of matter. Read More »

More Articles