Synopsis: Mirror, Mirror in Free Space

A Fabry-Pérot cavity exhibits the same behavior when an atom replaces a mirror.
Synopsis figure
Adapted from G. Hétet et al., Phys. Rev. Lett. (2011)

Electromagnetic fields change with boundary conditions around them. For example, a cavity made up of two end mirrors alters the field inside it.

In a paper in Physical Review Letters, Gabriel Hétet and colleagues at the University of Innsbruck in Austria report an experiment in which one mirror of a cavity is replaced by a barium ion 30 cm away, trapped in free space by an applied electric field. The presence of the single mirror alters the field around the atom, which also acts like a mirror and coherently reflects incident light. The experiment demonstrates how the presence of the mirror alters the way the atom couples to the laser light and changes the atomic coupling constant. The group observed that the setup behaves just like a simple cavity with two parallel mirrors, called a Fabry-Pérot cavity.

This part-cavity, part-free-space setup—an advance in the field of cavity quantum electrodynamics—can be used for storage and retrieval of single photons from the atom, necessary for quantum communication protocols. – Sonja Grondalski


More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Fluid Dynamics

Tiny Bubbles Burn Just Fine

Read More »

Next Synopsis


Electrons Churn Up Spin Waves

Read More »

Related Articles

Synopsis: Enter the Metacage

Synopsis: Enter the Metacage

An array of equally spaced nanowires, dubbed a metacage, could block optical radiation from entering or escaping a region of arbitrary shape. Read More »

Viewpoint: Sharing Heat in the Near Field

Viewpoint: Sharing Heat in the Near Field

The maximum amount of radiative heat that can be transferred between two objects of any shape has been calculated for separations of less than the thermal wavelength. Read More »

Synopsis: Quantum Rocking Motion in Molecular Rotors
Quantum Physics

Synopsis: Quantum Rocking Motion in Molecular Rotors

A type of quantum oscillation—known to occur for electrons in a crystal—has now been observed in a gas of molecular rotors that are spun around by laser pulses. Read More »

More Articles