Synopsis: Crowded Recombination

Researchers show that intershell recombination processes involving three and four electrons sometimes dominate over those involving only two.
Synopsis figure
C. Beilmann et al., Phys. Rev. Lett. (2011)

Dielectronic recombination, the resonant capture of a free electron by an ion, is a fundamental process in atomic physics and is of significant relevance to the fields of plasma physics and astrophysics. Calculations involving recombination processes often take into consideration interactions between only two electrons, neglecting higher-order correlations, especially the intershell ones, on the assumption that their contribution is minimal.

In an article appearing in Physical Review Letters, Christian Beilmann at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, and colleagues report measurements with unexpectedly strong higher-order contributions to electronic recombination. Despite the large momentum and energy transfers involved in these intershell processes, the researchers observe them in several ionized elements such as iron, krypton, and argon. The highly charged ions are generated using an electron beam ion trap where a K-shell electron interacts during recombination with one or two L-shell electrons. These experimental results are in good agreement with theoretical predictions and, surprisingly, show a strong increase in the high-order resonance strengths for ions with a low atomic number. These observations will likely solve puzzling discrepancies between theory and experiments. – Jihane Mimih


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Spintronics

Electrons Churn Up Spin Waves

Read More »

Next Synopsis

Quantum Information

A Traffic Light for Photons

Read More »

Related Articles

Synopsis: Detecting a Molecular Duet
Atomic and Molecular Physics

Synopsis: Detecting a Molecular Duet

Using a scanning tunneling microscope, researchers detect coupled vibrations between two molecules. Read More »

Viewpoint: How to Create a Time Crystal
Atomic and Molecular Physics

Viewpoint: How to Create a Time Crystal

A detailed theoretical recipe for making time crystals has been unveiled and swiftly implemented by two groups using vastly different experimental systems. Read More »

Viewpoint: What Goes Up Must Come Down
Atomic and Molecular Physics

Viewpoint: What Goes Up Must Come Down

A molecular fountain, which launches molecules rather than atoms and allows them to be observed for long times, has been demonstrated for the first time. Read More »

More Articles