Synopsis

Electrons Churn Up Spin Waves

Physics 4, s142
A new technique amplifies spin waves electronically and does not rely on external microwave sources.
Z. Wang et al., Phys. Rev. Lett. (2011)

A spin wave propagates through a ferromagnet when the spins precess around an applied magnetic field in a progressive way—the spin at each location in the lattice is slightly ahead of the one next to it. Researchers have high hopes for using them in devices, but the waves tend to damp out rapidly, thanks to scattering on defects and other effects. One way to amplify spin waves and counter damping uses microwaves, but it only works in a narrow frequency range and requires a microwave source. In a paper in Physical Review Letters, Zihui Wang of Colorado State University in Fort Collins and colleagues introduce another way to amplify spin waves using only a nearby electric current.

The team sent 50-nanosecond-long spin wave pulses horizontally through a 4.6-micrometer-thick yttrium iron garnet (YIG) film “capped” with a 20-nanometer-thick layer of platinum. During each spin wave pulse, they applied a dc voltage pulse to the platinum layer above, which, thanks to the spin Hall effect, generated a current of spin-polarized electrons moving downward toward the YIG film. These polarized electrons scattered off the YIG and donated some of their angular momentum to the spin waves.

The team showed that they could boost or attenuate the spin wave amplitude by up to 15%, depending on the amplitude and polarity of the dc voltage. They now hope to dramatically increase the amplification by using larger dc voltages in a way that doesn’t interfere with the spin waves. – David Ehrenstein


Subject Areas

Spintronics

Related Articles

Voltage Control over Magnons
Spintronics

Voltage Control over Magnons

Researchers have demonstrated that magnetic spin waves called magnons can be controlled by voltage and thus could operate more efficiently as information carriers in future devices. Read More »

Altermagnetism Then and Now
Condensed Matter Physics

Altermagnetism Then and Now

Recent theoretical work has identified the possibility of a new and fundamental form of magnetism. Read More »

Detection of the Orbital Hall Effect
Spintronics

Detection of the Orbital Hall Effect

Two different experiments on two different transition metals reveal that a current of electron orbital angular momentum flows in response to an electric field. Read More »

More Articles