Synopsis: Quantum Pairs Walking

Researchers demonstrate quantum random walks of photon pairs that interact like bosons, fermions, or anything in between, which could be used to simulate other quantum systems.
Synopsis figure
L. Sansoni et al., Phys. Rev. Lett. (2012)

Harnessing quantum information could allow powerful computations that are inaccessible to classical systems. But many quantum features of a single particle simply reflect its wavelike aspects. Experiments in Physical Review Letters simultaneously manipulate pairs of particles, whose interlinked behavior cannot be emulated by classical waves. Linda Sansoni of Sapienza University of Rome, Italy, and her colleagues implemented the quantum version of a discrete random walk using photons in a centimeter-sized glass chip. They first focused intense laser pulses along chosen paths, which tweak the glass’s refractive index to create stable waveguides for later photons. Running two parallel waveguides alongside each other for about two millimeters gives a photon a 50/50 chance of jumping between them.

The team wrote an array of parallel waveguides that periodically came closer to their left or right neighbors. A photon launched into one waveguide could emerge in any of eight guides, depending on which jumps it made in the various interaction regions. But unlike the classical version of the random walk, the probabilities of different outcomes reflect the effects of quantum interference between different paths.

The researchers used beamsplitters to mimic both a “quantum coin” operation (whether a photon jumps) and the walker displacement. By launching pairs of photons whose polarization states were entangled, the researchers could reproduce all types of quantum interactions, from fermionlike repulsion to bosonlike attraction and anything in between. These results matched theoretical expectations, but the technique could be adapted to simulate other, less-well-understood quantum systems. – Don Monroe

Correction (6 January 2012): Paragraph 3, sentence 1, “The researchers used the vertical or horizontal polarization of the photons to encode a quantum degree of freedom, or “quantum coin,” which affects whether a photon jumps or not.” changed to “The researchers used beamsplitters to mimic both a “quantum coin” operation (whether a photon jumps) and the walker displacement.”


More Announcements »

Subject Areas

Quantum InformationPhotonics

Previous Synopsis

Interdisciplinary Physics

Quantum Search for Elusive Numbers

Read More »

Next Synopsis

Related Articles

Synopsis: Optical Computing Under the Lens
Quantum Information

Synopsis: Optical Computing Under the Lens

A theoretical analysis quantifies the technical resources required to build a quantum computer based on photons. Read More »

Viewpoint: Wiring Up Superconducting Qubits
Quantum Physics

Viewpoint: Wiring Up Superconducting Qubits

A qubit made of a semiconducting nanowire sandwiched between two superconductors could simplify the design of quantum information processing architectures. Read More »

Synopsis: Connecting Qubits with Sound
Quantum Information

Synopsis: Connecting Qubits with Sound

Surface acoustic waves may work as a “quantum bus” that carries information to different parts of a quantum computer. Read More »

More Articles