Synopsis

W Marks the Spot

Physics 5, s56
Two experimental collaborations at Fermilab report a new measurement of the W boson mass that leads to a better prediction of the mass of the Higgs boson.

Long before experimentalists at the Large Hadron Collider reported hints of the Higgs boson in particle collisions (see 13 March 2012 Viewpoint), physicists knew roughly what the Higgs mass had to be from measurements of the W boson. That’s because according to the standard model, the W boson, one of the particles that mediates the weak interaction, can emit a virtual Higgs boson and reabsorb it, which alters the W boson’s mass. The mass of the W boson also shifts due to a virtual process containing a top and bottom quark. So with a precise measurement of the W mass, and a good measurement of the top quark mass, it is possible to predict the mass of the Higgs boson.

Now the CDF and D0 Collaborations at Fermilab are each reporting in Physical Review Letters their new measurements of the W mass using datasets containing a total of about 2 million W decays to an electron or muon and a neutrino. By analyzing the kinematics from this large sample, the two experiments achieve a combined precision of about 0.02%.

These new values narrow the allowed range in top-W mass space. The band of top-W masses corresponding to the 115–127 GeV range of Higgs masses, allowed by direct searches, goes right through the allowed region determined by CDF and D0. If the LHC does find the Higgs boson in the 115–127 GeV mass window, it will be yet another success for the predictions of the standard model. – Robert Garisto


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles