Synopsis: Deconstructing the Quark Gluon Plasma

Clues about the briefly liberated quarks and gluons in high-energy collisions lie in the relic hadrons they leave behind.

Understanding steam would be really difficult if one only had access to cubes of ice, yet this is exactly the challenge confronting researchers studying the quark-gluon plasma (QGP), a liquidlike state of matter obtained from colliding atomic nuclei at relativistic energies. The constituents of the plasma are quarks and gluons that are momentarily liberated from the colliding nucleons, but the strong nuclear force freezes these particles so rapidly into protons, neutrons, and other stable hadrons that it is difficult to measure them directly. To understand the microscopic constituents of the plasma (quarks and gluons), experimentalists need to know how to interpret what they can actually measure (the relic hadrons).

In a paper appearing in Physical Review Letters, Scott Pratt at Michigan State University, East Lansing, proposes a precise relationship between the charge correlations of the quarks and gluons and statistical correlations between the spatial distributions of the measured hadrons. The author used various known results from numerical simulations based on lattice quantum-chromodynamics to bolster his proposal, which can, in principle, be tested against data from experiments at the Large Hadron Collider and the Relativistic Heavy Ion Collider. In particular, Pratt has carefully accounted for the effect of charge correlations on the hadronic distribution, which required separating the contributions of numerous other effects. – Abhishek Agarwal


Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Next Synopsis

Materials Science

Phasons Passing By

Read More »

Related Articles

Viewpoint: Extending an Alternative to Feynman Diagrams
Particles and Fields

Viewpoint: Extending an Alternative to Feynman Diagrams

A simplifying technique for calculating scattering amplitudes—the basis for predictions in particle physics experiments—has been extended to cover a class of effective quantum field theories. Read More »

Synopsis: A Little Empty Inside
Cosmology

Synopsis: A Little Empty Inside

A new model has allowed researchers to test a theory for why the centers of dark matter halos are less dense than expected. Read More »

Synopsis: Still Waiting For Electron Decay
Particles and Fields

Synopsis: Still Waiting For Electron Decay

Scientists have placed new limits on how often electrons decay into neutrinos and photons, a reaction that—if it occurred—would violate the law of charge conservation. Read More »

More Articles