Synopsis: Bubbles Leave Trouble in Their Wake

Researchers have developed a new method of magnetic resonance imaging that can track the turbulent flow that swirls around moving bubbles.
Synopsis figure
A. B. Tayler et al., Phys. Rev. Lett. (2012)

Bubbles rising in a pot of boiling water generate turbulence in their wake, but characterizing this fluid flow has been hindered by the opacity of bubble-filled water. A new technique using magnetic resonance imaging (MRI) can directly map the velocity field in the fluid. Observations of single and multiple bubbles are reported in Physical Review Letters, showing how turbulent-related vortices form in bubble wakes.

Fluids containing bubbles or solid particles are called multiphase flows. They are poorly understood because the bubbles or particles scatter the light that is typically used to measure fluid velocity. MRI offers a well-established, noninvasive method for visualizing the interiors of opaque materials, but it has often been too slow to capture highly dynamic flows.

In recent work, Alexander Tayler and his colleagues at the University of Cambridge, UK, showed that MRI could effectively observe multiphase flows if spiral imaging was used (here, “spiral” refers to the data sampling pattern imposed by the magnetic field gradient needed to spatially resolve the magnetic resonance signal). They have now quadrupled the speed of this technique by including compressed sensing, which is a mathematical procedure for extracting an image from sparsely sampled data. This allows MRI “movies” to be taken at 188 frames per second. In preliminary tests on single bubbles, the new method captured sideways-moving vortices and related them to the side-to-side jittering that bubbles make as they rise. When the team looked at swarms of bubbles, they found that these vortices combine to form large-scale turbulent structures called vortex chains. – Michael Schirber


Announcements

More Announcements »

Subject Areas

Fluid Dynamics

Previous Synopsis

Next Synopsis

Statistical Physics

The Opposite of Friction

Read More »

Related Articles

Synopsis: Racing to the Bottom
Fluid Dynamics

Synopsis: Racing to the Bottom

A concentrated suspension of particles can fall through a fluid faster than a single particle. Read More »

Focus: Bumblebees In Turbulence
Biological Physics

Focus: Bumblebees In Turbulence

A simulation of a flying bee shows that insects don’t expend extra energy to maintain lift in turbulent air flow. Read More »

Synopsis: Twisted Fluid Flows
Fluid Dynamics

Synopsis: Twisted Fluid Flows

Liquids can follow twisted paths when flowing through porous media. Read More »

More Articles