Synopsis

Building a Better Atom Trap

Physics 5, s109
An improved method for trapping cesium atoms near dielectric nanofibers raises possibilities for applications as well as tests of fundamental physics.
A. Goban et al., Phys. Rev. Lett. (2012)

There are numerous techniques for trapping individual atoms or atom clouds in isolation, but one current goal is to find ways to trap atoms near structures. These composite systems could be used to make quantum networks that explore physical systems not available in the natural world. In Physical Review Letters, Akihisa Goban, at the California Institute of Technology in Pasadena, and collaborators demonstrate an improved technique for trapping a cesium atom approximately 200 nanometers from the surface of a dielectric nanofiber, in a way that is less disruptive to the atom than previous approaches.

Researchers have trapped cesium atoms near a dielectric nanostructure before, but Goban et al. enhance existing trapping schemes by two techniques. First, the laser fields that form the atom trap are all operated at so-called “magic frequencies” that minimize distortions between ground and excited electronic levels for a trapped atom. Second, two pairs of lasers, tuned to frequencies below and above an atomic transition, are configured to reduce differential trapping potentials among the various substates of ground and excited levels. These modifications avoid the light shifts that hindered previous implementations, thereby greatly reducing the inhomogeneous broadening for laser spectroscopy of the trapped atoms.

Goban et al.’s work brings various applications into the realm of possibility, including the creation of 1D atomic mirrors for cavity QED, investigations of single-photon nonlinearities, and quantum many-body physics in 1D spin chains. Additionally, the scheme might enable precision measurements of Casimir-Polder forces near dielectric surfaces. The trapping method can also be extended from trapping atoms near simple nanofibers to doing so near complex photonic crystal structures. – Daniel Ucko


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles