Synopsis: Cosmic Drift

Changes in the diffusion constant of cosmic rays due to self-induced turbulence may explain unexpected features in the cosmic-ray spectrum.
Synopsis figure
Simon Swordy (U. Chicago), NASA

To a good approximation, the flux of cosmic rays—relativistic particles, including protons, electrons, and nuclei—hitting the earth drops off smoothly with energy, but it’s the kinks and bends in this spectrum that alert astrophysicists to new or exotic mechanisms by which such particles are accelerated to their relativistic speeds. In Physical Review Letters, Pasquale Blasi at the National Institute for Astrophysics in Arcetri, Italy, and colleagues argue, based on their calculations, that unexpected features in the cosmic-ray spectrum can be explained by the ways cosmic rays scatter in the interstellar medium en route to earth.

It is generally believed that shock waves, created in supernova explosions, give the necessary boost to particles with energies from 10 giga-electron-volts (GeV) to 1000 tera-electron-volts. The particles then travel diffusively, scattering from magnetic fields in the galaxy. This picture explains why the cosmic-ray flux falls off with a simple power law over five decades of energy, but several experiments, including the earth-orbiting satellite PAMELA, observed that it falls off slightly faster with energy below 230GeV, compared to above this energy.

To explain this subtle kink, Blasi et al. calculated the diffusion constant of cosmic rays that had been accelerated by supernova shocks. The authors showed that self-induced turbulence, consisting of magnetic waves due to the cosmic rays themselves, dominate the energy dependence of the diffusion constant below 230GeV, while turbulence in preexisting magnetic fields dominates diffusion above this energy. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsCosmology

Previous Synopsis

Semiconductor Physics

Topological Insulators by the Slice

Read More »

Next Synopsis

Quantum Information

Quantum Solution for Telescope Arrays

Read More »

Related Articles

Synopsis: Neutrino Flashes from Exploding Stars
Astrophysics

Synopsis: Neutrino Flashes from Exploding Stars

Calculations indicate that neutrino emission from a supernova could be detected on Earth, possibly revealing how the star explodes. Read More »

Synopsis: Model Tries to Solve Five Physics Problems at Once
Particles and Fields

Synopsis: Model Tries to Solve Five Physics Problems at Once

A minimal extension to the standard model of particle physics involves six new particles. Read More »

Synopsis: Cosmic Test of Quantum Mechanics
Quantum Physics

Synopsis: Cosmic Test of Quantum Mechanics

Light from two stars in the Milky Way has been used to test an open loophole of quantum physics. Read More »

More Articles