Synopsis: Topological Insulators by the Slice

For sufficiently thin films of topological insulators, the metallic surface states that make these materials interesting become insulating.

Topological insulators are materials that are insulators in the interior, but conduct in reduced dimensions due to special conducting states that topological order protects from localization or backscattering. Two-dimensional topological insulators have conducting edge states (1D), whereas three-dimensional ones have conducting surface states (2D). However, this ideal situation is usually complicated by unintentional doping, which makes the bulk conduct and obscures the transport properties of the surface states. Previous studies using photoemission, scanning probe techniques, and transport measurements have increased our understanding of surface states, but now, writing in Physical Review Letters, Alexey Taskin at Osaka University, Japan, and co-workers, bring to bear a different approach made possible by the unprecedented quality of their samples.

Taskin and coauthors have grown high-quality epitaxial films of Bi2Se3, a three-dimensional topological insulator. In such films, the electron mobility is high enough to display Shubnikov-de Haas oscillations in the magnetic-field dependence of the conductivity, a quantum-mechanical effect arising from the quantization of electron motion in strong magnetic fields. These oscillations reveal the presence and properties of metallic surface states. The authors grow Bi2S3 films layer-by-layer, as multiple repetitions of the same unit, a Se-Bi-Se-Bi-Se quintuple layer (QL). Adding QLs one by one, they observe that, for films thinner than 6 QLs, the surface states become insulating. The authors ascribe this effect to hybridization between “top” and “bottom” surfaces, which leads to the loss of three dimensionality and hence of topological protection from backscattering. – Daniel Ucko


Announcements

More Announcements »

Subject Areas

Semiconductor PhysicsMesoscopics

Previous Synopsis

Nonlinear Dynamics

Power Falls in Sync

Read More »

Next Synopsis

Astrophysics

Cosmic Drift

Read More »

Related Articles

Focus: Voltage Fluctuations Converted to Electricity
Mesoscopics

Focus: Voltage Fluctuations Converted to Electricity

In a step toward the conversion of excess heat into electric current, researchers demonstrate a device that generates current in response to voltage fluctuations that mimic heat. Read More »

Viewpoint: Crystal Vibrations Invert Quantum Dot Exciton
Semiconductor Physics

Viewpoint: Crystal Vibrations Invert Quantum Dot Exciton

Phonons assist in creating an excitation-dominated state, or population inversion, in a single quantum dot—an effect that could be used to realize single-photon sources. Read More »

Viewpoint: Diamond Spins Shining Bright
Quantum Information

Viewpoint: Diamond Spins Shining Bright

The spin on a silicon defect in diamond can be prepared in a coherent quantum state, a promising sign that it could encode information in a quantum internet. Read More »

More Articles