Synopsis: Topological Insulators by the Slice

For sufficiently thin films of topological insulators, the metallic surface states that make these materials interesting become insulating.

Topological insulators are materials that are insulators in the interior, but conduct in reduced dimensions due to special conducting states that topological order protects from localization or backscattering. Two-dimensional topological insulators have conducting edge states (1D), whereas three-dimensional ones have conducting surface states (2D). However, this ideal situation is usually complicated by unintentional doping, which makes the bulk conduct and obscures the transport properties of the surface states. Previous studies using photoemission, scanning probe techniques, and transport measurements have increased our understanding of surface states, but now, writing in Physical Review Letters, Alexey Taskin at Osaka University, Japan, and co-workers, bring to bear a different approach made possible by the unprecedented quality of their samples.

Taskin and coauthors have grown high-quality epitaxial films of Bi2Se3, a three-dimensional topological insulator. In such films, the electron mobility is high enough to display Shubnikov-de Haas oscillations in the magnetic-field dependence of the conductivity, a quantum-mechanical effect arising from the quantization of electron motion in strong magnetic fields. These oscillations reveal the presence and properties of metallic surface states. The authors grow Bi2S3 films layer-by-layer, as multiple repetitions of the same unit, a Se-Bi-Se-Bi-Se quintuple layer (QL). Adding QLs one by one, they observe that, for films thinner than 6 QLs, the surface states become insulating. The authors ascribe this effect to hybridization between “top” and “bottom” surfaces, which leads to the loss of three dimensionality and hence of topological protection from backscattering. – Daniel Ucko


More Features »


More Announcements »

Subject Areas

Semiconductor PhysicsMesoscopics

Previous Synopsis

Nonlinear Dynamics

Power Falls in Sync

Read More »

Next Synopsis


Cosmic Drift

Read More »

Related Articles

Synopsis: Quantum Circulator on a Chip
Quantum Information

Synopsis: Quantum Circulator on a Chip

A circulator that routes microwave signals is suitable for scaling up quantum-computing architectures. Read More »

Synopsis: Flip-Flopping the Bands

Synopsis: Flip-Flopping the Bands

A pair of semiconductor quantum wells with an inverted band structure hosts electrons whose spins are almost all in the same quantum state.   Read More »

Focus: Negative Resistance with a Single Atom

Focus: Negative Resistance with a Single Atom

Current flowing through a single silicon atom can be made to decrease with increasing voltage, potentially allowing the integration of a new type of component into microelectronic circuits. Read More »

More Articles