Synopsis: Quantum Solution for Telescope Arrays

Quantum repeaters, devices that have been proposed for transporting encrypted information, could help collect light from distant telescopes in large area arrays.
Synopsis figure
D. Gottesman et al. Phys. Rev. Lett. (2012)

Large telescope arrays have a high resolving power because light is collected from several telescopes and compared using interferometry techniques. Designing optical and infrared arrays with the telescopes further apart would give astronomers a higher resolution tool with which to image planets outside our solar system and stars with more detail. However, the greater the distance the light has to travel from each telescope to the interferometer, the harder it is to ensure it won’t suffer a phase fluctuation or attenuate along its path, which is what limits current optical and infrared telescope arrays to separations of a few hundred meters.

In Physical Review Letters, Daniel Gottesman at the Perimeter Institute for Theoretical Physics in Canada and his colleagues propose that future designs of telescope arrays might take advantage of quantum tools. They suggest transporting light from the telescopes to the interferometer using quantum repeaters—devices, which can, in principle, use entangled photons to transmit quantum states with great precision over very long distances.

Current quantum repeater technology has been tailored for quantum communication and can’t accommodate the high photon rate and bandwidth of light collected by telescopes. Gottesman et al. have outlined the requirements for using quantum repeaters in telescope interferometers and argue that it is worth developing these quantum devices given the new astronomical insights that larger telescope arrays would permit. – Sami Mitra


Announcements

More Announcements »

Subject Areas

Quantum InformationAstrophysics

Previous Synopsis

Astrophysics

Cosmic Drift

Read More »

Next Synopsis

Semiconductor Physics

Tunneling with the Help of Photons

Read More »

Related Articles

Synopsis: Sharper Vision for Infrared Telescopes
Optics

Synopsis: Sharper Vision for Infrared Telescopes

Converting infrared light to visible light might boost the sensitivity of infrared telescope arrays. Read More »

Focus: More Hints of Exotic Cosmic-Ray Origin
Astrophysics

Focus: More Hints of Exotic Cosmic-Ray Origin

New Space Station data support a straightforward model of cosmic-ray propagation through the Galaxy but also add to previous signs of undiscovered cosmic-ray sources such as dark matter. Read More »

Viewpoint: Photon Qubit is Made of Two Colors
Optics

Viewpoint: Photon Qubit is Made of Two Colors

Single particles of light can be prepared in a quantum superposition of two different colors, an achievement that could prove useful for quantum information processing. Read More »

More Articles