Synopsis: Self-Elongating Nanowires

A new self-assembly process creates nanowires of germanium without the metal catalyst required in earlier experiments.
Synopsis figure
J. J. Zhang et al., Phys. Rev. Lett. (2012)

Traditional “top-down” methods for fabricating nanodevices are hampered by defects and other irregularities. Growing interest has therefore centered on bottom-up strategies that involve the self-assembly of individual components. As part of this trend, scientists have developed a novel method for producing germanium nanowires that, unlike previous efforts, can be grown directly on a microchip during fabrication without the need of any metal catalyst to drive the self-assembly.

Bottom-up fabrication is highly precise and reproducible, since the desired component is essentially built atom by atom. Semiconductor nanowires, for example, grow incrementally, like tiny plant shoots, with the help of metal nanostructures that concentrate the semiconductor material and then extrude it in a single direction. One drawback of this method is that the metal catalyst can contaminate the wire. Another is that integration of such vertically grown wires into silicon technology is extremely challenging.

To avoid this problem, Jianjun Zhang of the Leibniz Institute for Solid State and Materials Research in Dresden, Germany, and his colleagues developed a catalyst-free way to make nanowires on a flat surface. Using molecular beam epitaxy, they deposited a thin layer of germanium on a silicon substrate. They then annealed their samples at 560C. The germanium first collected into well-known tent-shaped islands called “hut clusters.” But after a few hours, these islands stretched out to a few microns in length, while maintaining a height of roughly three unit cells (or about 2 nanometers). Theoretical modeling showed that the wires grew because the tent shape reduces the surface energy of the germanium layer. The small and uniform cross section of the nanowires could make them ideal for certain devices, such as those that control the spin of the charge carriers. – Michael Schirber


More Announcements »

Subject Areas

NanophysicsMaterials Science

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Measuring Spin One Atom at a Time

Synopsis: Measuring Spin One Atom at a Time

Electron microscopy experiments have measured the spin state of individual metal atoms on a graphene layer, characterizing their potential for information storage applications.   Read More »

Synopsis: Light Sees Electronic Bands

Synopsis: Light Sees Electronic Bands

An all-optical alternative to photoemission spectroscopy can probe the electronic band structure of a solid. Read More »

Synopsis: Unexpected Cracking Behavior in Composite Structures
Materials Science

Synopsis: Unexpected Cracking Behavior in Composite Structures

A combination of brittle and porous materials fractures under opposite conditions to conventional brittle materials. Read More »

More Articles