Synopsis: Solar Down Time

A theoretical model of sunspots shows that their occasional disappearance may be due to a combination of fluctuations in the Sun’s polar magnetic field and outer layer flows.
Synopsis figure
NASA/Solar Dynamics Laboratory

Our Sun takes a break every half-millennium or so from its usual cycle of sunspot activity. These so-called “grand minima” may influence the Earth’s climate, as evidenced by a cold spell during the Maunder minimum (1645-1715). Scientists would therefore like to know more about the physics underlying these sunspot variations. A new theoretical analysis assumes that grand minima originate from fluctuations of the Sun’s magnetic field and circulation in its outer layers. The model, reported in Physical Review Letters, correctly matches the estimated occurrence of minima in the past.

A sunspot is a temporary dark region on the Sun’s surface, which results from a concentration of magnetic flux. Astronomical observations show that a drop in sunspot numbers comes with a decrease in solar brightness and solar flare counts. Typically, the number of sunspots falls and rises in an 11-year cycle, but sometimes sunspots disappear for several decades at a time. Studies of atmospheric isotopes estimate that our Sun experienced 27 grand minima in the last 11,000 years.

Previous work suggested that a grand minimum may be triggered by weakening in the Sun’s magnetic field and circulation. To study this further, Arnab Choudhuri and Bidya Karak of the Indian Institute of Science in Bangalore, India, started with a solar dynamo model that reproduces much of sunspot behavior. They then introduced observationally-inspired random fluctuations in both the amplitude of the polar magnetic field and the speed of meridional flows in the Sun’s outer layers. The model was consistent with data, predicting 24 to 30 grand minima over 11,000 years. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Astrophysics

Previous Synopsis

Biological Physics

Protein Shells Take a Strength Test

Read More »

Next Synopsis

Related Articles

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure
Astrophysics

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure

Experiments and computer simulations show that the segregation of small and large rocks on an asteroid’s surface can arise from the way particles hitting the surface collide with the rocks already present. Read More »

Synopsis: Neutrino Flashes from Exploding Stars
Astrophysics

Synopsis: Neutrino Flashes from Exploding Stars

Calculations indicate that neutrino emission from a supernova could be detected on Earth, possibly revealing how the star explodes. Read More »

Synopsis: Cosmic Test of Quantum Mechanics
Quantum Physics

Synopsis: Cosmic Test of Quantum Mechanics

Light from two stars in the Milky Way has been used to test an open loophole of quantum physics. Read More »

More Articles