Synopsis: Molecular Motors Perform Better in Traffic

A new model of molecular motors working in unison finds that motor-motor interactions can boost the efficiency of the system.
Synopsis figure
Courtesy Alberto Imparato/University of Aarhus

Molecular motors are tiny biological machines that turn chemical energy into mechanical motion. Previous research has considered the thermodynamic efficiency of single motors, but often several motors are operating together in the same place. A new theoretical model—presented in Physical Review Letters—explores the consequences of “traffic” interactions between transporting motors. The findings show that, when working at maximum power output, interacting motors can be more efficient than single motors working alone.

Molecular motors perform various tasks, from contracting muscles to maneuvering DNA. An example is kinesin, which carries molecular cargo by walking along cellular structures called microtubules. Thermal fluctuations cause transitions between different chemical states of the motor, while a particular chemical reaction driving the motor biases the transitions such that forward motion becomes more probable than backward motion. But if several kinesin are moving on the same microtubule, their motion will be affected because they can’t “step” on each other.

Natalia Golubeva and Alberto Imparato of the University of Aarhus in Denmark studied how kinesin efficiency at maximum power depends on such traffic interactions. They varied the available chemical energy and calculated the maximum output power per molecule with respect to cargo load. In general, the larger the load, the slower the molecules moved, but small cargo loads could lead to “bumper-to-bumper” traffic, in which the output power behaves differently than for large cargo loads, where the traffic flowed more freely. For certain values of the chemical energy, the efficiency at maximum power was higher for interacting molecules than it would be for noninteracting molecules, and these cases turned out to be in the biologically relevant parameter range. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological PhysicsStatistical Physics

Previous Synopsis

Plasma Physics

Heat from Beats

Read More »

Next Synopsis

Particles and Fields

Particle Physics with Ferroelectrics

Read More »

Related Articles

Viewpoint: New Clues as to Why Boyajian’s Star is Dimming
Statistical Physics

Viewpoint: New Clues as to Why Boyajian’s Star is Dimming

A statistical analysis links a star’s mysterious brightness fluctuations to internal nonequilibrium phenomena, rather than structures orbiting around the star. Read More »

Focus: Membrane Holes Can Shrink, Grow, or Stay Put
Soft Matter

Focus: Membrane Holes Can Shrink, Grow, or Stay Put

Pores in a polymer film do not change size over time if they have just the right diameter, according to experiments. Read More »

Focus: How Cells Remember Who They Are
Biological Physics

Focus: How Cells Remember Who They Are

A theoretical model of chromosome strands as polymers explains why chemical markers on genes can survive from one cell generation to the next. Read More »

More Articles