Synopsis: Molecular Motors Perform Better in Traffic

A new model of molecular motors working in unison finds that motor-motor interactions can boost the efficiency of the system.
Synopsis figure
Courtesy Alberto Imparato/University of Aarhus

Molecular motors are tiny biological machines that turn chemical energy into mechanical motion. Previous research has considered the thermodynamic efficiency of single motors, but often several motors are operating together in the same place. A new theoretical model—presented in Physical Review Letters—explores the consequences of “traffic” interactions between transporting motors. The findings show that, when working at maximum power output, interacting motors can be more efficient than single motors working alone.

Molecular motors perform various tasks, from contracting muscles to maneuvering DNA. An example is kinesin, which carries molecular cargo by walking along cellular structures called microtubules. Thermal fluctuations cause transitions between different chemical states of the motor, while a particular chemical reaction driving the motor biases the transitions such that forward motion becomes more probable than backward motion. But if several kinesin are moving on the same microtubule, their motion will be affected because they can’t “step” on each other.

Natalia Golubeva and Alberto Imparato of the University of Aarhus in Denmark studied how kinesin efficiency at maximum power depends on such traffic interactions. They varied the available chemical energy and calculated the maximum output power per molecule with respect to cargo load. In general, the larger the load, the slower the molecules moved, but small cargo loads could lead to “bumper-to-bumper” traffic, in which the output power behaves differently than for large cargo loads, where the traffic flowed more freely. For certain values of the chemical energy, the efficiency at maximum power was higher for interacting molecules than it would be for noninteracting molecules, and these cases turned out to be in the biologically relevant parameter range. – Michael Schirber


Announcements

More Announcements »

Subject Areas

Biological PhysicsStatistical Physics

Previous Synopsis

Plasma Physics

Heat from Beats

Read More »

Next Synopsis

Particles and Fields

Particle Physics with Ferroelectrics

Read More »

Related Articles

Synopsis: Magnetic Carpet Ride
Magnetism

Synopsis: Magnetic Carpet Ride

Magnetic particles self-assemble into a sheet that can carry cells and other tiny cargo to a specific location. Read More »

Synopsis: Silent Flocks
Biological Physics

Synopsis: Silent Flocks

Flocking birds appear to communicate through collective waves, but these waves may not be able to travel in flocks of a certain size. Read More »

Synopsis: Water Flow Helps Cells Move
Biological Physics

Synopsis: Water Flow Helps Cells Move

Water flowing through a cell’s membrane is essential to the process of changing cellular shape. Read More »

More Articles