Synopsis: Boosting the Force of Light

Metamaterials offer a way to enhance light-induced forces in waveguide-based optomechanical devices.
Synopsis figure
V. Ginis et al., Phys. Rev. Lett. (2013)

The force exerted by light can be sufficient to manipulate nano- and micron-sized objects. These effects can be exploited to trap and move atoms and particles in devices such as optical tweezers, or to generate displacements in nanoscale optomechanical systems. Writing in Physical Review Letters, Vincent Ginis at the Vrije Universiteit Brussel, Belgium, and colleagues demonstrate theoretically that metamaterials can be used to dramatically enhance the optically induced mechanical forces between two coupled waveguides.

In optical waveguides the electric field decays exponentially with distance, with a peak at the center of the waveguide. If two waveguides are placed in such proximity that the decaying fields overlap, this may cause an optically induced attractive or repulsive force between the two structures. The authors propose a device in which two optical waveguides, cladded with a metamaterial layer, are separated by a thin air gap. The presence of the metamaterial enhances the electric field at the edges of the modified waveguides, which in turn increases the magnitude of the optical force.

Ginis et al. modeled two types of metamaterials: single-negative (in which only the relative permittivity is negative) and double-negative (in which the permittivity and permeability are both negative, resulting in a negative index of refraction). In both cases the optical forces are enhanced, but the effect is stronger for single-negative metamaterial cladding, in which certain resonant losses can be avoided. Single-negative metamaterials can be formed from a stack of thin metal sheets, a configuration easily realizable experimentally. These results open the way for the design of new actuation devices, which can generate optical forces with magnitudes not currently achievable. – Katherine Thomas


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Getting Plasma in a Twist

Synopsis: Getting Plasma in a Twist

Laser vortex beams can exchange their optical angular momentum with a plasma from which they are reflected. Read More »

Synopsis: Metamaterial Inverts the Hall Effect
Materials Science

Synopsis: Metamaterial Inverts the Hall Effect

A metamaterial that looks like chainmail has a Hall coefficient whose sign is flipped compared to the material it’s made from. Read More »

Synopsis: Starting Fluid for Laser Fusion
Energy Research

Synopsis: Starting Fluid for Laser Fusion

A laser-based fusion experiment demonstrates that liquid fuel capsules could rectify problems encountered with ice-based fuel capsules. Read More »

More Articles