Synopsis: Dark Solitons Make an Appearance

Shape-preserving waves that create a depression in the surrounding medium are observed in water for the first time.
Synopsis figure
A. Chabchoub et al., Phys. Rev. Lett. (2013)

Ocean waves are in constant flux: they appear, grow, and then slowly fade away. Solitons, however, don’t follow this pattern. Instead, these localized surface waves keep their size and shape as they move through space and time. In Physical Review Letters, Amin Chabchoub of Imperial College London, UK, and colleagues show for the first time that an unusual type of soliton, called a dark soliton, can be generated in water. Unlike “bright” solitons, which locally amplify the surrounding liquid, dark solitons represent a local decrease in the wave amplitude.

Dark solitons have been experimentally observed in a number of systems ranging from optics to plasmas, but not in water. Chabchoub et al. used a 17-meter-long wave tank to look for and study the waves, which they generated at one end of the tank with a computer-controlled paddle and absorbed at the other end with a porous material that acted as an artificial beach. To image the solitons, the group took advantage of the fact that solitons move more slowly than the carrier waves on which they travel: When a carrier wave entered the soliton, the authors could see its amplitude dropping to zero; similarly, when the carrier wave exited, its amplitude returned to a constant value—exactly as theoretical calculations had predicted.

Now that dark solitons have been generated in the laboratory, it’s reasonable to think they might also form in the ocean. If so, they may play a role in real ocean waves or influence extreme events like tsunamis. Exploring these possibilities will require more realistic laboratory “oceans” that allow the solitons to travel over longer distances. – Katherine Thomas


More Features »


More Announcements »

Subject Areas

Nonlinear DynamicsFluid Dynamics

Previous Synopsis

Quantum Information

Big Shifts on an Atomic Scale

Read More »

Next Synopsis

Related Articles

Synopsis: Drops Shatter in the Cold
Fluid Dynamics

Synopsis: Drops Shatter in the Cold

High-speed video and modeling reveal the conditions under which water drops explode when they’re frozen from the outside in. Read More »

Focus: <i>Video</i>—Liquid Drop Bursts into Thousands of Pieces
Soft Matter

Focus: Video—Liquid Drop Bursts into Thousands of Pieces

A drop of water-alcohol mixture on a layer of oil was caught on video bursting into thousands of tiny droplets. Read More »

Viewpoint: Reservoir Computing Speeds Up
Nonlinear Dynamics

Viewpoint: Reservoir Computing Speeds Up

A brain-inspired computer made with optoelectronic parts runs faster thanks to a hardware redesign, recognizing simple speech at the rate of 1 million words per second. Read More »

More Articles